Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theo...Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency...Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.展开更多
To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates...To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments.The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight,shade dry weight,and dry weight of P.palustre,with 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer presenting the optimum effects.Non-targeted metabolomics revealed that 1096 metabolites were identified in 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer,and 885 metabolites were annotated in the Human Metabolome Database(HMDB).There were 318 differential metabolites(DMs)found between the two treatments,and 263 metabolites were annotated in HMDB.The abundance of 2 phenolic compounds and 12 organic oxygen compounds in the treatment of 4500 kg hm−2 organic fertilizer was significantly higher than that of the 450 kg hm−2 compound fertilizer,while the abundance of 21 organic oxygen compounds,14 flavonoids,3 phenolic compounds,and 5 cinnamic acids and their derivatives was significantly up-regulated in 450 kg hm−2 compound fertilizer treatment.In addition,5 metabolic pathways were significantly enriched,and the flavone and flavonol biosynthesis was the most significantly differential metabolic pathway.These results suggested that the application of both compound fertilizers and organic fertilizers can increase the yield of P.palustre,but their effects on metabolites were different.This study has considerable implications for the planting and cultivation of P.palustre,furnishing a scientific foundation for an efficient and rational application of fertilizer.展开更多
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi...Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.展开更多
Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the...Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the effects of CRU application on the photosynthetic rate and endogenous enzyme activities of rice.Accordingly,a twoyear field trial was conducted with a total of seven treatments:CK,no N fertilizer;BBF,regular blended fertilizer;RBBF,20%N-reduced regular blended fertilizer;CRF1,70%CRU+30%regular urea one-time base application;CRF2,60%CRU+40%regular urea one-time base application;RCRF1,CRF1 treatment with 20%N reduction;and RCRF2,CRF2 treatment with 20%N reduction.Each treatment was conducted in triplicate.The results showed that the N recovery efficiency(NRE)of the controlled-release bulk blending fertilizer(CRBBF)treatments was significantly greater over the two years.There were significant yield increases of 4.1–5.9%under the CRF1treatment and 5.6–7.6%under the CRF2 treatment compared to the BBF treatment,but the differences between the reduced-N treatments RBBF and RCRF2 were not significant.Photosynthetic rates under the CRF1 and CRF2treatments were significantly higher than under the other treatments,and they had significantly greater RuBPCase,RuBisCO,glutamate synthase(GOGAT)and glutamine synthetase(GS)enzyme activities.Additionally,the soil NH_(4)^(+)-N and NO_(3)^(–)-N contents under the CRBBF treatments were significantly higher at the late growth stage of rice,which was more in-line with the fertilizer requirements of rice throughout the reproductive period.CRBBF also led to some improvement in rice quality.Compared with the BBF and RBBF treatments,the protein contents under the CRBBF treatments were reduced but the milling,appearance,eating and cooking qualities of the rice were improved.These results showed that the application of CRBBF can improve the NRE,photosynthetic rate and endogenous enzyme activities of rice,ensuring sufficient N nutrition and photosynthetic material production during rice growth and thereby achieving improved rice yield and quality.展开更多
One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and fro...One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.展开更多
[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back o...A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients.展开更多
[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyl...[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.展开更多
In order to study the effects of controlled release nitrogen fertilizer (CRNF) application on rapeseed, a simulated experiment was carried out with 3 types of paddy soils in Dongting Lake area for 4 consecutive year...In order to study the effects of controlled release nitrogen fertilizer (CRNF) application on rapeseed, a simulated experiment was carried out with 3 types of paddy soils in Dongting Lake area for 4 consecutive years of applying CRNF under double rice cropping system after planting rapeseed crop in the fallow season. The effects of CRNF application on rapeseed yield, agronomic characters and soil fertility were studied in this paper. The results showed that CRNF application improved the growth of rapeseed plant and increased rapeseed yield of CRNF treatments in the purple calcareous clayed paddy soil (PCS) and alluvial loamy paddy soil (ALS) which respectively increased by 12.2% and 9.8% compared with applying urea, re- spectively. The rapeseed yield in 70% CRNF treatment obviously decreased com- pared with urea treatment. The contents of available N and organic carbon in soil increased by 25.0% and 3.2% in CRNF treatment in the ALS after rapeseed crop, respectively; and available N increased by 13.5% in the PCS. Both rapeseed yield and soil fertility in CRNF treatment and 70% CRNF treatment were lower than those in CK treatment in the reddish yellow clayed paddy soil (RYS). The results al- so indicated that the functions of CRNF application on rapeseed yield increase and soil nitrogen fertility improvement were very obvious in the PCS and ALS.展开更多
[Objective] This study aimed to provide certain scientific basis for reasonable application of nitrogen fertilizer in the pollution-free cultivation of Phaseolus vulgaris. [Method] A field experiment was conducted to ...[Objective] This study aimed to provide certain scientific basis for reasonable application of nitrogen fertilizer in the pollution-free cultivation of Phaseolus vulgaris. [Method] A field experiment was conducted to investigate the effects of different nitrogen fertilization amounts on the prophase yield and economic efficiency of P. vulgaris and available nitrogen content of soil. [Result] With the increased application amount of nitrogen fertilizer, the prophase yield and economic efficiency of P. vulgaris reached the peaks in the Treatment 3 (8 690.48 kg/ hm^2 and 32 222 yuan/hm^2), and significant differences were found among different treatment groups. With the increased nitrogen fertilization amount, the soil available nitrogen content increased, showing a positive correlation with correlation coefficient of 0.856 5. Excess nitrogen fertilizer reduced the prophase yield and economic efficiency of P. vulgaris. For the open field cultivation of P. vulgaris, the optimum application amount of nitrogen fertilizer was 178 kg/hm^2. [Conclusion] Application of nitrogen fertilizer could effectively increase the soil available nitrogen content.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the...To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.展开更多
The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers...The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).展开更多
The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the...The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv). We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha^–1). Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input (22.5 Mg ha^–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.展开更多
Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils...Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.展开更多
Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon(C) emissions.This study was conducted to determine optimized N fertilizer application for high gr...Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon(C) emissions.This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn(Zea mays L.).A field experiment, including 0(N0), 75(N75), 150(N150), 225(N225), and 300(N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain(NCP).The results showed that grain yield, input energy, greenhouse gas(GHG) emissions, and carbon footprint(CF) were all increased with the increase of N rate, except net energy yield(NEY).The treatment of N225 had the highest grain yield(10 364.7 kg ha–1) and NEY(6.8%), but the CF(0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP.Comparing GHG emision compontents, N fertilizer(0–51.1%) was the highest and followed by electricity for irrigation(19.73–49.35%).We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.展开更多
The effects of application of N fertilizer on wheat on the grain yield and N use efficiency (FNUE) of rice in the wheat-rice rotation system, as well as on the soil fertility were studies. N-fertilizer application o...The effects of application of N fertilizer on wheat on the grain yield and N use efficiency (FNUE) of rice in the wheat-rice rotation system, as well as on the soil fertility were studies. N-fertilizer application on wheat significantly increased total N, arnrnoniurn-N and nitrate-N contents in paddy field, resulting in high indigenous N supply of soil (INS). Compared with low INS, the effect of N rate on the grain yield of rice was reduced significantly, and FNUE was decreased under high INS. These results indicated that high INS was one of the main reasons for the low FNUE in rice.展开更多
文摘Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
基金funded by grants from the National Natural Science Foundation of China(32301947,32272220 and 32172120)the China Postdoctoral Science Foundation(2023M730909).
文摘Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.
基金funded by the Fund Projects of the Central Government in Guidance of Local Science and Technology Development(GuiKeZY22096020)Guangxi Key R&D Plan Project(2023AB23078)+1 种基金National Natural Science Foundation of China(82260750)Appropriate Technology Development and Promotion Project of Guangxi Traditional Chinese Medicine Administration(GZSY23-07).
文摘To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments.The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight,shade dry weight,and dry weight of P.palustre,with 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer presenting the optimum effects.Non-targeted metabolomics revealed that 1096 metabolites were identified in 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer,and 885 metabolites were annotated in the Human Metabolome Database(HMDB).There were 318 differential metabolites(DMs)found between the two treatments,and 263 metabolites were annotated in HMDB.The abundance of 2 phenolic compounds and 12 organic oxygen compounds in the treatment of 4500 kg hm−2 organic fertilizer was significantly higher than that of the 450 kg hm−2 compound fertilizer,while the abundance of 21 organic oxygen compounds,14 flavonoids,3 phenolic compounds,and 5 cinnamic acids and their derivatives was significantly up-regulated in 450 kg hm−2 compound fertilizer treatment.In addition,5 metabolic pathways were significantly enriched,and the flavone and flavonol biosynthesis was the most significantly differential metabolic pathway.These results suggested that the application of both compound fertilizers and organic fertilizers can increase the yield of P.palustre,but their effects on metabolites were different.This study has considerable implications for the planting and cultivation of P.palustre,furnishing a scientific foundation for an efficient and rational application of fertilizer.
基金funded by the National Key Research and Development Program of China(2023YFD150050504)the Key Research and Development Program of Shandong Province,China(2022SFGC0301)the Strategic Priority Research Program of the Chinese Academy of Sciences-Development and Application Technology of Special Package Fertilizer for Improving Albic Soil(XDA28100203)。
文摘Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20220563)the Key R&D Program of Jiangsu Province,China(BE2022338)the Colleges and Universities in Jiangsu Province Natural Science Foundation of China(19KJB210014)。
文摘Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the effects of CRU application on the photosynthetic rate and endogenous enzyme activities of rice.Accordingly,a twoyear field trial was conducted with a total of seven treatments:CK,no N fertilizer;BBF,regular blended fertilizer;RBBF,20%N-reduced regular blended fertilizer;CRF1,70%CRU+30%regular urea one-time base application;CRF2,60%CRU+40%regular urea one-time base application;RCRF1,CRF1 treatment with 20%N reduction;and RCRF2,CRF2 treatment with 20%N reduction.Each treatment was conducted in triplicate.The results showed that the N recovery efficiency(NRE)of the controlled-release bulk blending fertilizer(CRBBF)treatments was significantly greater over the two years.There were significant yield increases of 4.1–5.9%under the CRF1treatment and 5.6–7.6%under the CRF2 treatment compared to the BBF treatment,but the differences between the reduced-N treatments RBBF and RCRF2 were not significant.Photosynthetic rates under the CRF1 and CRF2treatments were significantly higher than under the other treatments,and they had significantly greater RuBPCase,RuBisCO,glutamate synthase(GOGAT)and glutamine synthetase(GS)enzyme activities.Additionally,the soil NH_(4)^(+)-N and NO_(3)^(–)-N contents under the CRBBF treatments were significantly higher at the late growth stage of rice,which was more in-line with the fertilizer requirements of rice throughout the reproductive period.CRBBF also led to some improvement in rice quality.Compared with the BBF and RBBF treatments,the protein contents under the CRBBF treatments were reduced but the milling,appearance,eating and cooking qualities of the rice were improved.These results showed that the application of CRBBF can improve the NRE,photosynthetic rate and endogenous enzyme activities of rice,ensuring sufficient N nutrition and photosynthetic material production during rice growth and thereby achieving improved rice yield and quality.
基金provided by the National Key Research and Development Program of China(2018YFD0300904)Anhui Natural Science Foundation(2008085QC119)Key Fund Project of Anhui Department of Education(KJ2019A0176).
文摘One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103005-08)National Science and Technology Support Program during the 12thFive-year Plan(2012BAD05B05-3)International Plant Nutrition Institute S&T Program(Hunan-16)~~
文摘A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients.
基金Supported by National Key Technology R&D Program(2006BAD05B06-04)Kunming Science and Technology Program(08S010201)~~
文摘[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.
基金Supported by National Key Technology R&D Program Project in the 12~(th) Five-Year Plan:The 3~(rd) Hunan Special Project of Grain Bumper Science and Technology "The Integration and Demonstration of High-yield,Water-saving and Fertilizer-saving Techniques in the South Rice Area of Middle Reaches of Yangtze"(2013BAD07B11)Agro-scientific Research Programs in Public Interest "Study on the Change of Soil Fertility and Fertility Techniques in the Major Grain Producing Areas and the Demonstration"(201203030)International Cooperation Project"Study on the Efficient Nutrient Management Technology of Modern Double Cropping Rice in Hunan Province"(IPNI Hunan-18)~~
文摘In order to study the effects of controlled release nitrogen fertilizer (CRNF) application on rapeseed, a simulated experiment was carried out with 3 types of paddy soils in Dongting Lake area for 4 consecutive years of applying CRNF under double rice cropping system after planting rapeseed crop in the fallow season. The effects of CRNF application on rapeseed yield, agronomic characters and soil fertility were studied in this paper. The results showed that CRNF application improved the growth of rapeseed plant and increased rapeseed yield of CRNF treatments in the purple calcareous clayed paddy soil (PCS) and alluvial loamy paddy soil (ALS) which respectively increased by 12.2% and 9.8% compared with applying urea, re- spectively. The rapeseed yield in 70% CRNF treatment obviously decreased com- pared with urea treatment. The contents of available N and organic carbon in soil increased by 25.0% and 3.2% in CRNF treatment in the ALS after rapeseed crop, respectively; and available N increased by 13.5% in the PCS. Both rapeseed yield and soil fertility in CRNF treatment and 70% CRNF treatment were lower than those in CK treatment in the reddish yellow clayed paddy soil (RYS). The results al- so indicated that the functions of CRNF application on rapeseed yield increase and soil nitrogen fertility improvement were very obvious in the PCS and ALS.
文摘[Objective] This study aimed to provide certain scientific basis for reasonable application of nitrogen fertilizer in the pollution-free cultivation of Phaseolus vulgaris. [Method] A field experiment was conducted to investigate the effects of different nitrogen fertilization amounts on the prophase yield and economic efficiency of P. vulgaris and available nitrogen content of soil. [Result] With the increased application amount of nitrogen fertilizer, the prophase yield and economic efficiency of P. vulgaris reached the peaks in the Treatment 3 (8 690.48 kg/ hm^2 and 32 222 yuan/hm^2), and significant differences were found among different treatment groups. With the increased nitrogen fertilization amount, the soil available nitrogen content increased, showing a positive correlation with correlation coefficient of 0.856 5. Excess nitrogen fertilizer reduced the prophase yield and economic efficiency of P. vulgaris. For the open field cultivation of P. vulgaris, the optimum application amount of nitrogen fertilizer was 178 kg/hm^2. [Conclusion] Application of nitrogen fertilizer could effectively increase the soil available nitrogen content.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.
基金the National Key Technologies R & D Program of China (2006BAD05B09, 2006BAD02A14)the National Ba- sic Research Program of China (2007CB109308)the China-Japan Collaboration Project
文摘To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.
基金Financial supports are from the National Natural Science Foundation of China(41571298,41620104006)the Special Fund for Agro-scientific Research in the Public Interest,China(201203030,201303126)the National Key Technologies R&D Program of China(2012BAD14B04)
文摘The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).
基金supported by the earmarked fund for China Agriculture Research System (CARS-22)the Key Special Projects in National Key Research and Development Plan of China (2017YFD0301504 and 2016YFD0300900)+1 种基金the Scientific and Technological Innovation Project in Hunan Academy of Agricultural Sciences, China (2017JC47)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-18)
文摘The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv). We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha^–1). Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input (22.5 Mg ha^–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.
基金The study was supported by the 948 Program of theMinistry of Agriculture of China (2003-253) the Natural Science Foundation of Hebei Province,China (300130).
文摘Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.
基金supported by the National Basic Research Program of China(973 Program,2010CB951502)the Special Fund for Agro-Scientific Research in the Public Interest in China(201103001)
文摘Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon(C) emissions.This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn(Zea mays L.).A field experiment, including 0(N0), 75(N75), 150(N150), 225(N225), and 300(N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain(NCP).The results showed that grain yield, input energy, greenhouse gas(GHG) emissions, and carbon footprint(CF) were all increased with the increase of N rate, except net energy yield(NEY).The treatment of N225 had the highest grain yield(10 364.7 kg ha–1) and NEY(6.8%), but the CF(0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP.Comparing GHG emision compontents, N fertilizer(0–51.1%) was the highest and followed by electricity for irrigation(19.73–49.35%).We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.
基金the Nation al Natural Science Foundation of China(30390080)948 Project of Ministry of Agriculture of China(2003-Z53) the International Rice Research Institute.
文摘The effects of application of N fertilizer on wheat on the grain yield and N use efficiency (FNUE) of rice in the wheat-rice rotation system, as well as on the soil fertility were studies. N-fertilizer application on wheat significantly increased total N, arnrnoniurn-N and nitrate-N contents in paddy field, resulting in high indigenous N supply of soil (INS). Compared with low INS, the effect of N rate on the grain yield of rice was reduced significantly, and FNUE was decreased under high INS. These results indicated that high INS was one of the main reasons for the low FNUE in rice.