[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" te...[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.展开更多
[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was car...[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain.展开更多
Manure and fertilizer applications can increase soil productivity and land economic values, but the controversial result can be a decline of water quality due to the increased nutrient exports from soils to the stream...Manure and fertilizer applications can increase soil productivity and land economic values, but the controversial result can be a decline of water quality due to the increased nutrient exports from soils to the streams. The impacts of landuse, manure and fertilizer application on nutrient exports from soils to the streams were analyzed using the SWAT (Soil Water Assessment Tool) model for the Salmon River watershed in south-central British Columbia, Canada. The results showed that the animal farms had the highest rates of nutrient exports from soils to the streams and the natural forested lands had the lowest. It was estimated that the whole Salmon River watershed would export approximately 11.52 t·yr-1 of organic nitrogen (ON), 8.05 t·yr-1 of nitrate nitrogen (NO3-N), 2.30 t·yr-1 of organic phosphorus (OP) and 1.36 t·yr-1 of soluble reactive phosphorus (SRP) if the whole watershed was covered by natural vegetation without human disturbance. Current landuse changes, by converting natural vegetation lands to agriculture and animal farms and associated manure and fertilizer applications, have in-creased approximately 53.30 t·yr-1 of ON, 9.68 t·yr-1 of NO3-N, 22.69 t·y-1 of OP and 6.23 t·y-1 of SRP exports to the streams in the whole watershed. The SWAT model predicted that a daily 100 kg·ha-1 of fresh manure deposit from grazing cows during grazing season from later spring to later fall could increase 2.57 kg·ha-1·yr-1 of ON, 0.39 kg·ha-1·yr-1 of NO3-N, 2.35 kg·ha-1·yr-1 of OP and 0.48 kg·ha-1·yr-1 of SRP export to the streams. Fertilization could increase 1.57 kg ha-1 yr-1 of ON and 4.02 kg·ha-1·yr-1 of NO3-N export to the streams if 100 kg·ha-1·yr-1 of nitrogen (NH4NO3) fertilizer was applied in spring. Also fertilization could increase 1.18 kg·ha-1·yr-1 of OP and 0.20 kg·ha-1·yr-1 of SRP export to the streams if 100 kg·ha-1 phosphorus (P2O5) fertilizer was applied in spring.展开更多
Our attitude towards mineral nitrogen (N) fertilizers is ambivalent. N fertilizers have on one hand increased our supply of food, feed and other bio-based raw materials tremendously and also improved the use efficienc...Our attitude towards mineral nitrogen (N) fertilizers is ambivalent. N fertilizers have on one hand increased our supply of food, feed and other bio-based raw materials tremendously and also improved the use efficiency of land and labor, but have on the other hand a negative impact on the quality of the environment and contributed to the depletion of fossil fuel reserves. This awareness has resulted in strong pleas to spend much more attention to the recycling of N containing downstream “wastes”. It is, however, naive to assume that even perfect recycling suffices to offer the same number of people the same diet without inputs of “new” N, as inevitable losses of N make compensations indispensable. “New” N can be derived from either biological N fixation (“legumes”) or from industrially fixed N (“fertilizer”). The existing literature provides no evidence that the use of N fertilizers is per se unsustainable, as these fertilizers can also be made from renewable forms of energy. Besides, soil health and human health appear sensitive for the dosage but not for the form of N. It is yet imperative to reduce the input of “new” N as much as possible, so as to minimize adverse environmental effects. Measures to this end are a more precise assessment of crop N requirements, a better timing and positioning of N inputs, and any measure supporting the acceptance of “wastes” by farmers. The present paper elaborates the above aspects.展开更多
Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theo...Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:展开更多
The knowledge of the nutritional requirements and their relation to the physiology of marine algae growth is key to incorporate new species into aquaculture, whose dynamics tend to be largely unknown. The use of <i...The knowledge of the nutritional requirements and their relation to the physiology of marine algae growth is key to incorporate new species into aquaculture, whose dynamics tend to be largely unknown. The use of <i><span style="font-family:Verdana;">Alsidium triquetrum</span></i><span style="font-family:Verdana;"> in the pharmacological industry depends on its availability in the </span><span style="font-family:Verdana;">natural environment, occasionally scarce. As macroalgae cultivation gains</span><span style="font-family:Verdana;"> momentum worldwide, it is important to know how the effects of nutrients are modulated in the thallus during cultivation. The linking of the relative growth rates (RGR) of </span><i><span style="font-family:Verdana;">A. triquetrum</span></i><span style="font-family:Verdana;"> and their relation with the macronutrients N (nitrogen), P (phosphorus) and K (potassium) at the tissue level under culture conditions constitutes the main contribution of this article. P levels tend to decrease as the plant completes its development. Both the concentration of N and P are higher in the stipe for the month of July, N (25.31 ± 0.26) vs P (0.846 ± 0.02) period when the highest vegetative development is reached. The N and P modulate the patterns of the species’ development over the an</span><span style="font-family:Verdana;">nual cycle, unlike K, which is not considered a limiting factor. When the</span><span style="font-family:Verdana;"> tem</span><span style="font-family:Verdana;">perature and lighting are not favorable for growth, the plant simply accu</span><span style="font-family:Verdana;">mulates these compounds. As environmental conditions change, these </span><span style="font-family:Verdana;">stored</span><span style="font-family:Verdana;"> compounds are actively used in their growth. The specimens with an initial weight of 50 g present the best accumulated biomass (RGR) throughout the annual cycle.</span>展开更多
[Objectives] This study was conducted to explore the fertilization ratio of walnut, so as to provide a basis for rational fertilization of walnut. [Methods] Under the condition of gravelly yellow soil in Chaotian Dist...[Objectives] This study was conducted to explore the fertilization ratio of walnut, so as to provide a basis for rational fertilization of walnut. [Methods] Under the condition of gravelly yellow soil in Chaotian District, Guangyuan City, the orthogonal design of L_9(3~4) was used to test the fertilization ratio of nitrogen, phosphorus and potassium fertilizers. [Results] The effects of nitrogen, phosphorus and potassium fertilizers on walnut yield ranked as phosphate fertilizer>potassium fertilizer>nitrogen fertilizer. The different treatments had great effects on the yield of walnut, and for the land with gravelly yellow soil, the suitable annual fertilization amount of walnut was urea 1 200 g/plant + calcium superphosphate 1 500 g/plant + potassium sulfate 940 g/plant. [Conclusions] This study provides a theoretical basis for rational fertilization of walnut in Sichuan Province.展开更多
The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nut...The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nutrients. In this paper, we combined spatial measurements from 2 157 soil samples and geostatistical analysis to assess the spatiotemporal changes in soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and available potassium content (AK) from the first soil survey (in the 1980s) to the second soil survey (in the 2000s) in the Taihu region of Jiangsu Province in China. The results showed that average soil nutrients in three soil types all exhibited the increased levels in the 2000s (except for AK in the yellow brown soil). The standard deviation of soil nutrient contents increased (except for TN in the paddy soil). Agricultural production in the 20 years led to increases in SOC, TN, AP and AK by 74, 82, 89 and 65%, respectively, of the Taihu areas analyzed. From the 1980s to 2000s all the nugget/sill ratios of soil nutrients indices were between 25 and 75% (except for AK in the yellow brown soil in the 2000s), indicating moderate spatial dependence. The ratio of AP in the yellow brown soil in the 2000s was 88.74%, showing weak spatial dependence. The spatial correlation range values for SOC, TN, AP and AK in the 2000s all decreased. The main areas showing declines in SOC, TN and AP were in the northwest. For AK, the main region with declining levels was in the east and middle of western areas. Apparently, the increase in soil nutrients in the Taihu region can be mainly attributed to the large increase in fertilizer inputs, change in crop systems and enhanced residues management since the 1980s. Future emphasis should be placed on avoiding excess fertilizer inputs and balancing the effects of the fertilizers in soils.展开更多
Objective: The current fertilization methods for Chinese yam are uneconomic and unfriend to environment. A rational one is very important to achieve desired balance of high yield of Chinese yam, economic and friend to...Objective: The current fertilization methods for Chinese yam are uneconomic and unfriend to environment. A rational one is very important to achieve desired balance of high yield of Chinese yam, economic and friend to environment. Here, we studied the effects of nitrogen(N), phosphorus(P), and potassium(K) fertilizers on the yield of ’Qinfeng’ Chinese yam in shallow-groove directional cultivation.Methods: The experiments were conducted in Dehua County, Fujian Province, China using a "3414" optimal design. Overall, three fertilizer factors(N, P, and K) were evaluated at the following four levels: 0, no fertilizer;1, 0.5-fold the typical rate;2, typical fertilization rate;and 3, 1.5-fold the typical rate. There were 14 different fertilization treatments.Results: Treatment 6(N2P2K2) produced the longest(75.6 cm) and thickest tubers(4.9 cm) with the highest tuber fresh weight(1311.9 g) and yield(41 015.9 kg/hm2), whereas, treatment 1 produced the shortest(65.6 cm) and thinnest tubers(3.9 cm) with the lowest fresh weight(953.4 g) and yield(28 532.8 kg/hm2) among the 14 fertilizer combinations. The experimental data could be fitted to single-variable quadratic and binary quadratic models but not to a ternary quadratic polynomial model. Appropriate N, P, and K fertilizer application rates increased Chinese yam yield. However, excessive fertilization lowered the yield. Chinese yam yield was significantly and strongly correlated with the amounts of N, P, and K fertilizer applied.Conclusion: Based on the single variable quadratic and binary quadratic models, we propose that the quantities of N, P, and K fertilizer used to grow 1 hm^(2)’Qinfeng’ Chinese yam should be 360–388.3,90–100.95, and 416.3–675 kg, respectively.展开更多
基金Supported by National Science and Technology Support Program(2007BAD89B14)Science and Technology Project of Guangdong Province(2009B020201011)~~
文摘[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.
文摘[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain.
文摘Manure and fertilizer applications can increase soil productivity and land economic values, but the controversial result can be a decline of water quality due to the increased nutrient exports from soils to the streams. The impacts of landuse, manure and fertilizer application on nutrient exports from soils to the streams were analyzed using the SWAT (Soil Water Assessment Tool) model for the Salmon River watershed in south-central British Columbia, Canada. The results showed that the animal farms had the highest rates of nutrient exports from soils to the streams and the natural forested lands had the lowest. It was estimated that the whole Salmon River watershed would export approximately 11.52 t·yr-1 of organic nitrogen (ON), 8.05 t·yr-1 of nitrate nitrogen (NO3-N), 2.30 t·yr-1 of organic phosphorus (OP) and 1.36 t·yr-1 of soluble reactive phosphorus (SRP) if the whole watershed was covered by natural vegetation without human disturbance. Current landuse changes, by converting natural vegetation lands to agriculture and animal farms and associated manure and fertilizer applications, have in-creased approximately 53.30 t·yr-1 of ON, 9.68 t·yr-1 of NO3-N, 22.69 t·y-1 of OP and 6.23 t·y-1 of SRP exports to the streams in the whole watershed. The SWAT model predicted that a daily 100 kg·ha-1 of fresh manure deposit from grazing cows during grazing season from later spring to later fall could increase 2.57 kg·ha-1·yr-1 of ON, 0.39 kg·ha-1·yr-1 of NO3-N, 2.35 kg·ha-1·yr-1 of OP and 0.48 kg·ha-1·yr-1 of SRP export to the streams. Fertilization could increase 1.57 kg ha-1 yr-1 of ON and 4.02 kg·ha-1·yr-1 of NO3-N export to the streams if 100 kg·ha-1·yr-1 of nitrogen (NH4NO3) fertilizer was applied in spring. Also fertilization could increase 1.18 kg·ha-1·yr-1 of OP and 0.20 kg·ha-1·yr-1 of SRP export to the streams if 100 kg·ha-1 phosphorus (P2O5) fertilizer was applied in spring.
基金financially supported by OCI Nitrogen,Geleen,The Netherlands
文摘Our attitude towards mineral nitrogen (N) fertilizers is ambivalent. N fertilizers have on one hand increased our supply of food, feed and other bio-based raw materials tremendously and also improved the use efficiency of land and labor, but have on the other hand a negative impact on the quality of the environment and contributed to the depletion of fossil fuel reserves. This awareness has resulted in strong pleas to spend much more attention to the recycling of N containing downstream “wastes”. It is, however, naive to assume that even perfect recycling suffices to offer the same number of people the same diet without inputs of “new” N, as inevitable losses of N make compensations indispensable. “New” N can be derived from either biological N fixation (“legumes”) or from industrially fixed N (“fertilizer”). The existing literature provides no evidence that the use of N fertilizers is per se unsustainable, as these fertilizers can also be made from renewable forms of energy. Besides, soil health and human health appear sensitive for the dosage but not for the form of N. It is yet imperative to reduce the input of “new” N as much as possible, so as to minimize adverse environmental effects. Measures to this end are a more precise assessment of crop N requirements, a better timing and positioning of N inputs, and any measure supporting the acceptance of “wastes” by farmers. The present paper elaborates the above aspects.
文摘Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:
文摘The knowledge of the nutritional requirements and their relation to the physiology of marine algae growth is key to incorporate new species into aquaculture, whose dynamics tend to be largely unknown. The use of <i><span style="font-family:Verdana;">Alsidium triquetrum</span></i><span style="font-family:Verdana;"> in the pharmacological industry depends on its availability in the </span><span style="font-family:Verdana;">natural environment, occasionally scarce. As macroalgae cultivation gains</span><span style="font-family:Verdana;"> momentum worldwide, it is important to know how the effects of nutrients are modulated in the thallus during cultivation. The linking of the relative growth rates (RGR) of </span><i><span style="font-family:Verdana;">A. triquetrum</span></i><span style="font-family:Verdana;"> and their relation with the macronutrients N (nitrogen), P (phosphorus) and K (potassium) at the tissue level under culture conditions constitutes the main contribution of this article. P levels tend to decrease as the plant completes its development. Both the concentration of N and P are higher in the stipe for the month of July, N (25.31 ± 0.26) vs P (0.846 ± 0.02) period when the highest vegetative development is reached. The N and P modulate the patterns of the species’ development over the an</span><span style="font-family:Verdana;">nual cycle, unlike K, which is not considered a limiting factor. When the</span><span style="font-family:Verdana;"> tem</span><span style="font-family:Verdana;">perature and lighting are not favorable for growth, the plant simply accu</span><span style="font-family:Verdana;">mulates these compounds. As environmental conditions change, these </span><span style="font-family:Verdana;">stored</span><span style="font-family:Verdana;"> compounds are actively used in their growth. The specimens with an initial weight of 50 g present the best accumulated biomass (RGR) throughout the annual cycle.</span>
基金Supported by Technological Achievements Transformation Fund for Research Institutes in Sichuan Province(14010112)
文摘[Objectives] This study was conducted to explore the fertilization ratio of walnut, so as to provide a basis for rational fertilization of walnut. [Methods] Under the condition of gravelly yellow soil in Chaotian District, Guangyuan City, the orthogonal design of L_9(3~4) was used to test the fertilization ratio of nitrogen, phosphorus and potassium fertilizers. [Results] The effects of nitrogen, phosphorus and potassium fertilizers on walnut yield ranked as phosphate fertilizer>potassium fertilizer>nitrogen fertilizer. The different treatments had great effects on the yield of walnut, and for the land with gravelly yellow soil, the suitable annual fertilization amount of walnut was urea 1 200 g/plant + calcium superphosphate 1 500 g/plant + potassium sulfate 940 g/plant. [Conclusions] This study provides a theoretical basis for rational fertilization of walnut in Sichuan Province.
基金the funding support from the New Century Exceptional Talent Program of China(NCET-08-0797)the National High-Tech Research and Development Program of China(2013AA100404)+2 种基金the National Basic Research Program of China(2009CB118608)the CSIRO-Chinese Ministry of Education(MOE)PhD Research Fellowship Programthe Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nutrients. In this paper, we combined spatial measurements from 2 157 soil samples and geostatistical analysis to assess the spatiotemporal changes in soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and available potassium content (AK) from the first soil survey (in the 1980s) to the second soil survey (in the 2000s) in the Taihu region of Jiangsu Province in China. The results showed that average soil nutrients in three soil types all exhibited the increased levels in the 2000s (except for AK in the yellow brown soil). The standard deviation of soil nutrient contents increased (except for TN in the paddy soil). Agricultural production in the 20 years led to increases in SOC, TN, AP and AK by 74, 82, 89 and 65%, respectively, of the Taihu areas analyzed. From the 1980s to 2000s all the nugget/sill ratios of soil nutrients indices were between 25 and 75% (except for AK in the yellow brown soil in the 2000s), indicating moderate spatial dependence. The ratio of AP in the yellow brown soil in the 2000s was 88.74%, showing weak spatial dependence. The spatial correlation range values for SOC, TN, AP and AK in the 2000s all decreased. The main areas showing declines in SOC, TN and AP were in the northwest. For AK, the main region with declining levels was in the east and middle of western areas. Apparently, the increase in soil nutrients in the Taihu region can be mainly attributed to the large increase in fertilizer inputs, change in crop systems and enhanced residues management since the 1980s. Future emphasis should be placed on avoiding excess fertilizer inputs and balancing the effects of the fertilizers in soils.
基金financially supported by the "5511" Collaborative Innovation Project of the Fujian Provincial People’s Government and the Chinese Academy of Agricultural Sciences (No. XTCXGC2021019)the Fujian Provincial Public Welfare Research Project (No. 2022R1034002)。
文摘Objective: The current fertilization methods for Chinese yam are uneconomic and unfriend to environment. A rational one is very important to achieve desired balance of high yield of Chinese yam, economic and friend to environment. Here, we studied the effects of nitrogen(N), phosphorus(P), and potassium(K) fertilizers on the yield of ’Qinfeng’ Chinese yam in shallow-groove directional cultivation.Methods: The experiments were conducted in Dehua County, Fujian Province, China using a "3414" optimal design. Overall, three fertilizer factors(N, P, and K) were evaluated at the following four levels: 0, no fertilizer;1, 0.5-fold the typical rate;2, typical fertilization rate;and 3, 1.5-fold the typical rate. There were 14 different fertilization treatments.Results: Treatment 6(N2P2K2) produced the longest(75.6 cm) and thickest tubers(4.9 cm) with the highest tuber fresh weight(1311.9 g) and yield(41 015.9 kg/hm2), whereas, treatment 1 produced the shortest(65.6 cm) and thinnest tubers(3.9 cm) with the lowest fresh weight(953.4 g) and yield(28 532.8 kg/hm2) among the 14 fertilizer combinations. The experimental data could be fitted to single-variable quadratic and binary quadratic models but not to a ternary quadratic polynomial model. Appropriate N, P, and K fertilizer application rates increased Chinese yam yield. However, excessive fertilization lowered the yield. Chinese yam yield was significantly and strongly correlated with the amounts of N, P, and K fertilizer applied.Conclusion: Based on the single variable quadratic and binary quadratic models, we propose that the quantities of N, P, and K fertilizer used to grow 1 hm^(2)’Qinfeng’ Chinese yam should be 360–388.3,90–100.95, and 416.3–675 kg, respectively.