This paper describes the field tests carried out to evaluate the new Vicon RS-EDW centrifugal fertilizer spreader, to be used in Precision Agriculture. The results of initial dynamic calibration tests showed a signifi...This paper describes the field tests carried out to evaluate the new Vicon RS-EDW centrifugal fertilizer spreader, to be used in Precision Agriculture. The results of initial dynamic calibration tests showed a significant and systematic difference between the application rates of the two discs (about 20%). This difference had to be corrected by the manufacturer that carried out the necessary changes to the electric actuators. The fertilizer spreader had good distribution homogeneity, considering different working velocities and different positions in the parcel. The pattern distribution curve for 18% super phosphate fertilizer led to an effective working width of 28 meters, with a coefficient of variation of 15%. The longitudinal test, under experimental working conditions led to a machine delay time of 6-7 seconds. The results show an actual fertilization application density between 74%-90% of that determined for each location. These results confirm that the spreader can be used to spread fertilizer differentially in the field.展开更多
Unmanned aerial vehicles(UAVs)are widely being used to spread granular fertilizer in China.Granular fertilizer spreaders equipped with UAVs are mainly centrifugal disc-type and pneumatic.The multichannel pneumatic gra...Unmanned aerial vehicles(UAVs)are widely being used to spread granular fertilizer in China.Granular fertilizer spreaders equipped with UAVs are mainly centrifugal disc-type and pneumatic.The multichannel pneumatic granular fertilizer spreaders(MPGFSs)have a banded fertilizer deposition distribution pattern,which are more suitable for variable rate fertilization with high precision requirement than the circular deposition distribution pattern of disc-type granular fertilizer spreaders(DGFSs).However,the existing MPGFS has the disadvantage of inconsistent discharge rate of each channel,which affects the uniformity of fertilization.In order to explore the causes of inconsistent discharge rate of each channel,the discrete element method(DEM)and bench test were performed to analysis the discharge process of the fluted roller fertilizing apparatus and distribution of fertilizer in axial direction of fluted roller.The computational fluid dynamics(CFD)was used to simulate the airflow field of pneumatic system to analyze the influence of airflow on the movement of fertilizer particles.The simulation results of the discharge process of the fluted roller fertilizing apparatus showed that the filling velocity at the axial ends of the fluted roller fertilizing apparatus was lower than that of the middle.The reason was that the filling capacity was weak near the wall.The simulated results of the airflow field without partitions showed that the airflow provided by the axial flow fan was rotational,and this caused the particles to move irregularly in the throat,resulting in inconsistency discharge rate of each channel.Based on the analysis of reasons of inconsistent discharge rate of each channel,a MPGFS with partitions in the throat was developed.The discharge rate bench tests were carried out to optimize the partition spacing parameters,and fertilization test was performed to test the performance of the improved MPGFS.The discharge rate test results showed better consistency with partition.The coefficient of variation(CV)of the discharge rate of each channel was 20.16%without the partition and 7.70%with the optimal partition.The fertilizer spreading uniformity bench test results shown that the CV of spreading uniformity of MPGFS without partitions was 15.32%,and that MPGFS with partitions was 8.69%.The partitions design was beneficial to improve the consistency of each channel discharge rate and the uniformity of fertilization.The finding can provide a strong reference to design the MPGFS.展开更多
文摘This paper describes the field tests carried out to evaluate the new Vicon RS-EDW centrifugal fertilizer spreader, to be used in Precision Agriculture. The results of initial dynamic calibration tests showed a significant and systematic difference between the application rates of the two discs (about 20%). This difference had to be corrected by the manufacturer that carried out the necessary changes to the electric actuators. The fertilizer spreader had good distribution homogeneity, considering different working velocities and different positions in the parcel. The pattern distribution curve for 18% super phosphate fertilizer led to an effective working width of 28 meters, with a coefficient of variation of 15%. The longitudinal test, under experimental working conditions led to a machine delay time of 6-7 seconds. The results show an actual fertilization application density between 74%-90% of that determined for each location. These results confirm that the spreader can be used to spread fertilizer differentially in the field.
基金supported by the Laboratory of Lingnan Modern Agriculture Project(Grant No.NT2021009)the Project of key R&D program of Guangzhou of China(Grant No.202206010149)+2 种基金in part by Science and Technology Plan of Jian City of China(Grant No.20211-055316 and[2020]83)Science and Technology Plan of Guangdong Province of China(2023B10564002 and 2021B 1212040009)Innovative Research Team of Agricultural and Rural Big Data in Guangdong Province of China(2019KJ138)。
文摘Unmanned aerial vehicles(UAVs)are widely being used to spread granular fertilizer in China.Granular fertilizer spreaders equipped with UAVs are mainly centrifugal disc-type and pneumatic.The multichannel pneumatic granular fertilizer spreaders(MPGFSs)have a banded fertilizer deposition distribution pattern,which are more suitable for variable rate fertilization with high precision requirement than the circular deposition distribution pattern of disc-type granular fertilizer spreaders(DGFSs).However,the existing MPGFS has the disadvantage of inconsistent discharge rate of each channel,which affects the uniformity of fertilization.In order to explore the causes of inconsistent discharge rate of each channel,the discrete element method(DEM)and bench test were performed to analysis the discharge process of the fluted roller fertilizing apparatus and distribution of fertilizer in axial direction of fluted roller.The computational fluid dynamics(CFD)was used to simulate the airflow field of pneumatic system to analyze the influence of airflow on the movement of fertilizer particles.The simulation results of the discharge process of the fluted roller fertilizing apparatus showed that the filling velocity at the axial ends of the fluted roller fertilizing apparatus was lower than that of the middle.The reason was that the filling capacity was weak near the wall.The simulated results of the airflow field without partitions showed that the airflow provided by the axial flow fan was rotational,and this caused the particles to move irregularly in the throat,resulting in inconsistency discharge rate of each channel.Based on the analysis of reasons of inconsistent discharge rate of each channel,a MPGFS with partitions in the throat was developed.The discharge rate bench tests were carried out to optimize the partition spacing parameters,and fertilization test was performed to test the performance of the improved MPGFS.The discharge rate test results showed better consistency with partition.The coefficient of variation(CV)of the discharge rate of each channel was 20.16%without the partition and 7.70%with the optimal partition.The fertilizer spreading uniformity bench test results shown that the CV of spreading uniformity of MPGFS without partitions was 15.32%,and that MPGFS with partitions was 8.69%.The partitions design was beneficial to improve the consistency of each channel discharge rate and the uniformity of fertilization.The finding can provide a strong reference to design the MPGFS.