期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Nitrogen Fertilizer with Nitrification Inhibitor DMPP (3,4-Dimethylpyrazole phosphate) on Nitrate Accumulation and Quality of Cabbage(Brassica campastris L.ssp. pekinesis) 被引量:4
1
作者 XUChao WULiang-huan +1 位作者 JUXiao-tang ZHANGFu-suo 《Agricultural Sciences in China》 CAS CSCD 2004年第8期622-626,共5页
To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, an... To assess the effects of N fertilizer ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3;ASN] with the new nitrification inhibitor (NI) 3, 4-dimethylpyrazole phosphate (DMPP)(ASN+DMPP) on yield, nitrate accumulation, and quality of cabbage (Brassica campastrisL. ssp. pekinesis), two field trials were carried out under various soil-climaticconditions in Jinhua City and Xinchang County, Zhejiang Province of China in 2002.Results showed that DMPP could increase the mean yield by+2.0tha-1 in Jinhua, +5.5tha-1 inXinchang, decrease NO3--N content by -9.4% in Jinhua, -7.3% in Xinchang and improvenutritional quality by increasing vitamin C (VC), soluble sugar, K, Fe, Zn contentssignificantly. 展开更多
关键词 Cabbage (Brassica campastris L. ssp. pekinesis) Nitrogen fertilizer yield NO3--N Quality 3 4-Dimethylpyrazole phosphate (DMPP)
下载PDF
Discussion of Fenlong Cultivation Supporting Food and Environment Safety and Broadening Survival and Development Space 被引量:3
2
作者 韦本辉 《Agricultural Science & Technology》 CAS 2016年第2期467-470,480,共5页
A new high-efficiency farming method of global significance, Fenlong tech- nique capable of making soil fertile, increasing yield and improving ecological envi- ronment was introduced; and the Fenlong technique could ... A new high-efficiency farming method of global significance, Fenlong tech- nique capable of making soil fertile, increasing yield and improving ecological envi- ronment was introduced; and the Fenlong technique could deeply plough and scarify soil with a depth up to 30-50 cm, which is deeper than the depth of tractor tillage, solving the problem of difficulties in deeply ploughing and scarifying soil and keeping soil loose for muttiple seasons. The application to 20 crops in 18 provinces proved that yield could be increased by 10%-30% without increase in chemical fertilizer, quality could be improved by more than 5%, and water storage could be increased by 100%; yield could be increased for multiple seasons sustainably, and the yield of dry-land crops increased by 32.57%-38.2% from the second year to the fourth year; the net benefits of rice increased by 21.82% averagely from the first season to the sixth season; and the usage amount of chemical fertilizer decreased by 0.35-4.29 kg per 100 kg produced grain compared with conventional tillage, with an decrease amplitude of 10.81%-30.99%. It was discussed that the Fenlong technique could maximize friendly permanently-sustainable unitization of "natural resources" including soil nutrients, water, oxygen and light energy, and has good development potential in multiple fields. It was put forward that if it is popularized in 0.67x108 hm2, pro- ductivity of farmland could be newly increased by 0.1-0.13×10^8 hm2, 5.0 ×10^6 t of chemical fertilizer could be saved, the' storage of agricultural water could be in- creased by 3.0×10^10 m3, and increased food could feed 2,0-3.0×10^8 people. 展开更多
关键词 Deep rotary tillage Fertilizing soil increasing yield and retaining water Increasing yield by 10%-30% Increasing storage of water precipitation by 100% Fenlong cultivation technique
下载PDF
Soil phosphorus dynamic, balance and critical P values in longterm fertilization experiment in Taihu Lake region, China 被引量:16
3
作者 SHI Lin-lin SHEN Ming-xing +4 位作者 LU Chang-yin WANG Hai-hou ZHOU Xin-wei JIN Mei-juan WU Tong-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2446-2455,共10页
Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, bala... Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, balance, critical P value and the crop yield response in Taihu Lake region, China. To avoid the effect of nitrogen(N) and potassium(K), only the following treatments were chosen for subsequent discussion, including: C0(control treatment without any fertilizer or organic manure), CNK treatment(mineral N and K only), CNPK(balanced fertilization with mineral N, P and K), MNK(integrated organic manure and mineral N and K), and MNPK(organic manure plus balanced fertilization). The results revealed that the response of wheat yield was more sensitive than rice, and no significant differences of crop yield had been detected among MNK, CNPK and MNPK until 2013. Dynamic and balance of soil total P(TP) and Olsen-P showed soil TP pool was enlarged significantly over consistent fertilization. However, the diminishing marginal utility of soil Olsen-P was also found, indicating that high-level P application in the present condition could not increase soil Olsen-P contents anymore. Linear-linear and Mitscherlich models were used to estimate the critical value of Olsen-P for crops. The average critical P value for rice and wheat was 3.40 and 4.08 mg kg^(–1), respectively. The smaller critical P value than in uplands indicated a stronger ability of P supply for crops in this paddy soil. We concluded that no more mineral P should be applied in rice-wheat system in Taihu Lake region if soil Olsen-P is higher than the critical P value. The agricultural technique and management referring to activate the plant-available P pool are also considerable, such as integrated use of low-P organic manure with mineral N and K. 展开更多
关键词 long-term fertilization soil P dynamic soil P balance crop yield critical P value
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部