In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to det...In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria.展开更多
Earthworms and its excreta (vermicast) promises to usher in the ‘Second Green Revolution’ by completely replacing the destructive agro chemicals which did more harm than good to both the farmers and their farmland. ...Earthworms and its excreta (vermicast) promises to usher in the ‘Second Green Revolution’ by completely replacing the destructive agro chemicals which did more harm than good to both the farmers and their farmland. Earthworms restore & improve soil fertility and significantly boost crop productivity. Earthworms excreta (vermicast) is a nutritive ‘organic fertilizer’ rich in humus, NKP, micronutrients, beneficial soil microbes—‘nitrogenfixing & phosphate solubilizing bacteria’ & ‘actinomycets’ and growth hormones ‘auxins’, ‘gibberlins’ & ‘cytokinins’. Both earthworms and its vermicast & body liquid (vermiwash) are scientifically proving as both ‘growth promoters & protectors’ for crop plants. In our experiments with corn & wheat crops, tomato and eggplants it displayed excellent growth performances in terms of height of plants, color & texture of leaves, appearance of flowers & fruits, seed ears etc. as compared to chemical fertilizers and the conventional compost. There is also less incidences of ‘pest & disease attack’ and ‘reduced demand of water’ for irrigation in plants grown on vermicompost. Presence of live earthworms in soil also makes significant difference in flower and fruit formation in vegetable crops. Composts work as a ‘slowrelease fertilizer’ whereas chemical fertilizers release their nutrients rather quickly in soil and soon get depleted. Significant amount of ‘chemical nitrogen’ is lost from soil due to oxidation in sunlight. However, with application of vermicompost the ‘organic nitro gen’ tends to be released much faster from the excreted ‘humus’ by worms and those mineralised by them and the net overall efficiency of nitrogen (N) is considerably greater than that of chemical fertilizers. Availability of phosphorus (P) is sometimes much greater. Our study sh ows that earthworms and vermicompost can promote growth from 50 to 100% over conventional compost & 30 to 40% over chemical fertilizers besides protecting the soil and the agro ecosystem while producing ‘nutritive and tasty food’ at a much economical cost (at least 50 75% less) as compared to the costly chemical fertilizers.展开更多
Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theo...Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:展开更多
Recently, 90 tons of human waste per day are collected from private residences, offices, and public facilities in Da Nang City. Meanwhile, farmers in this region have to allocate 10% - 20% of rice sales for purchasing...Recently, 90 tons of human waste per day are collected from private residences, offices, and public facilities in Da Nang City. Meanwhile, farmers in this region have to allocate 10% - 20% of rice sales for purchasing chemical fertilizer. Therefore, it is essential to be adopted more inexpensive organic fertilizer. To deal with these problems, Japan International Cooperation Agency (JICA) has signed a contract with Da Nang city government about human waste treatment and production of organic biomass liquid fertilizer (OBLF) in 2015. The aims of this project are to promote the use of OBLF in farming and improve public awareness of environmental protection. 530 respondents were interviewed at Hoa Vang districts of Da Nang city, and data was analyzed by Contingent Valuation Method (CVM) under double bounded dichotomous choice approach. The results have revealed that 436 respondents (82%) agreed to use OBLF. The farmers’ WTP depends on factors including household income, experience in using organic fertilizer, awareness of environment and training of organic fertilizer in the past. The estimated price for OBLF was 94,856 VND (4.0 USD)/ton. The cost that farmers paid for OBLF was lower than that of current available chemical fertilizers in Da Nang city. This proves that marketability seems to be existed for OBLF product in Da Nang city. From these findings, the government should have policies to support and subsidize the farmers to encourage them to use OBLF in a large scale of cultivation. Furthermore, establishment of a market to consume the organic products harvested from cultivated areas using OBLF is also recommended.展开更多
Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India ...Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India during summer 2016-2018 in order to develop fertilizer prescriptions through IPNS for the desired yield targets of Sesamum under field conditions.The bases for making the fertilizer prescriptions viz.nutrient requirement(NR),contribution of nutrients from soil(Cs),fertilizer(Cf)and vermicompost(CVC)were computed using the field experimental data.Making use of these basic parameters,the fertilizer prescription equations were developed under NPK alone and under IPNS for the desired yield targets of Sesamum for a range of soil test values.The quantity of fertilizers contributed by the application of vermicompost was assessed.Nutrient requirement to produce 100 kg of sesame seed was worked out to be 10.20 kg N,3.90 kg P2O5 and 5.22 kg K2O.In the present investigation,the requirement of N was higher which is followed by K2O and P2O5.The requirement of N was 2.62 times higher than P and 1.95 times higher than K.The percent contribution of N,P and K was 12.25,15.75 and 6.00 from soils,41.68,22.85 and 59.97 from fertilizer and 9.87,6.74 and 18.65 from organic manures,respectively.Thus the Inductive cum Targeted Yield Model used to develop fertilizer prescription equations provides a strong basis for soil fertility maintenance consistent with high productivity and efficient nutrient management in farming for sustainable and enduring agriculture.展开更多
[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme a...[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers.展开更多
In this paper, aiming at the problems of insufficient soil nutrients and high salt content in Wudi core demonstration area of Bohai Granary, a monitoring and management system of water, fertilizer and salt in saline-a...In this paper, aiming at the problems of insufficient soil nutrients and high salt content in Wudi core demonstration area of Bohai Granary, a monitoring and management system of water, fertilizer and salt in saline-alkaline farmland based on WebGIS was established in order to monitor and control water, fertilizer and salt. Based on the Windows.NET platform, using B/S mode of operation architecture and Visual Studio 2010 as the software development environment, the related components in ArcGIS Engine were invoked by ArcGIS API for Silverlirht, and the WEB system was developed by C# and XMAL language. Based on the principle of water, fertilizer and salt balance, a monitoring model and a regulation model for water, salt and nutrients were established. Intelligent analysis and application of farmland soil data were realized, and a precision agriculture system with data query, early warning diagnosis, monitoring and control of water, fertilizer and salt was formed. And the "water and salt homologue, water supply due to demand, adequate and multiple" irrigation scheme and the salt and alkali reduction scheme of "synergistic conditioning of agents and nutrients" and a nutrient regulation plan for "stabilizing nitrogen, increasing phosphorus, supplementing potassium at the discretion" and "quick-acting combining slow release" were put forward. Compared with the period without monitoring and control of water and salt, the effect of water saving and fertilizer saving was improved, and the yield of wheat and maize was also significantly increased. It provided guidance for local users to increase crop production and income, and greatly improved the utilization of resources and grain production.展开更多
Different crops need different kinds of nutrients. In this paper,formula of special fertilizer for common field crops in Guangxi is explored from the angle of grain crops,fruits,vegetables,sugar crops,oil crops,etc.,a...Different crops need different kinds of nutrients. In this paper,formula of special fertilizer for common field crops in Guangxi is explored from the angle of grain crops,fruits,vegetables,sugar crops,oil crops,etc.,and corresponding production equipment and methods are provided,which could convenience for agricultural precision fertilization and theoretical basis and technical reference for cost saving and efficiency increasing of fertilizer.展开更多
The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the...The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv). We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha^–1). Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input (22.5 Mg ha^–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.展开更多
Soybean and lentil are important legume crops in southern Saskatchewan (SK) that can supply the majority of their nitrogen (N) requirement through biological N fixation (BNF). However, the onset of BNF can be slow in ...Soybean and lentil are important legume crops in southern Saskatchewan (SK) that can supply the majority of their nitrogen (N) requirement through biological N fixation (BNF). However, the onset of BNF can be slow in cold;dry prairie soils and a small amount of seed-row placed fertilizer containing both N and phosphorus (P) may benefit the crop. Nevertheless, high rates of fertilizer in close proximity to the seed can also cause injury. This study was conducted to determine the response of lentil and soybean to a starter N-P fertilizer blend applied in the seed-row. A farm field located at the boundary of the Brown and Dark Brown soil zones in south-central Saskatchewan was selected to evaluate the effect of seed-row placed N-P fertilizer blend: 50% Urea + 50% mono-ammonium phosphate (MAP) applied at 0, 10, 20 and 30 kg N and P2O5 ha-1 on emergence, yield, and nutrient uptake. The proportion of nitrogen derived from fixation (ndff) was determined in the soybean using N-15 dilution technique. The rate of 10 kg N and P2O5 ha-1 was found to be the rate that did not significantly reduce emergence, stand count or proportion of N derived from fixation, and was sufficient to maximize yield, N and P uptake for both soybean and lentil under field conditions. Rates higher than 10 kg N ha-1 in the seed row as starter 28-26-0 blend reduced emergence and decreased the proportion of ndff.展开更多
A field experiment was conducted at El-Serw Agricultural Research Station, Damietta Governorate, Egypt during 2016/2017 and 2017/2018 seasons to reduce mineral N inputs of sugar beet with increased land use efficiency...A field experiment was conducted at El-Serw Agricultural Research Station, Damietta Governorate, Egypt during 2016/2017 and 2017/2018 seasons to reduce mineral N inputs of sugar beet with increased land use efficiency and profitability under intercropping conditions. Seven treatments included five treatments (90 kg nitrogen “N” + 30 m3 farm yard manure “FYM”/fad, 80 kg N +30 m3 FYM/fad, 70 kg N +30 m3 FYM/fad and 400 g of Cerealine + 30 m3 FYM/fad for intercropping faba bean cultivar Spanish with sugar beet cultivar Gloria) and two treatments (90 and 20 kg N/fad for solid culture of sugar beet and faba bean, respectively, as recommended mineral N fertilizer rate) were compared in a randomized complete block design with three replications. Solid culture of sugar beet with the application of recommended rate (90 kg N/fad) gave the highest top, root and sugar yields/fad, as well as the percentage of purity compared with the other treatments in both seasons. Intercropping faba bean with sugar beet plants with application of 90 kg N + 30 m3 FYM/fad gave the highest number of leaves/plant, leaf area/plant, root length, root diameter and root weight/plant followed by intercropped sugar beet plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. On the other hand, intercropped sugar beet that received 400 g of Cerealine + 30 m3 FYM/fad had the highest percentages of T.S.S. and sucrose followed by 70 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. Solid culture of faba bean with the application of 20 kg N/fad gave the highest plant height, number of seeds/pod and seed yield/fad, meanwhile the highest number of branches/plant and pod length were achieved by intercropping faba bean with sugar beet with application of 90 kg N + 30 m3 FYM/fad followed by intercropped faba bean plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. However, intercropped faba bean plants that fertilized with 70 kg N + 30 m3 FYM/fad gave the highest number of pods per plant, number of seeds per pod, seed index and seed yield per plant compared with the other treatments in both seasons. Land equivalent ratio (LER), land equivalent coefficient (LEC) and relative crowding coefficient (RCC) were high by intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad indicating yield advantage was achieved. The value of aggressivity (Agg) of sugar beet was negative for all combinations indicating that sugar beet is dominated component in the present study. Intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad achieved higher total income and monetary advantage index (MAI) than the other treatments. Growing sugar beet plants in both sides of beds (1.2 m width) with one faba bean row in middle of sugar beet beds with the application of 80 kg N + 30 m3 FYM/fad decreased mineral N fertilizer rate by 10.00% of the recommended sugar beet mineral N fertilizer rate, as well as increased land usage and profitability for Egyptian farmers compared with sugar beet solid culture.展开更多
Anaerobic digestion is a promising technology that could provide an option for managing animal waste with reduced greenhouse gas emissions. A three-year (2006-2008) field experiment was conducted at Star City, Saskatc...Anaerobic digestion is a promising technology that could provide an option for managing animal waste with reduced greenhouse gas emissions. A three-year (2006-2008) field experiment was conducted at Star City, Saskatchewan, Canada, to compare the effects of land-applied anaerobically digested swine manure (ADSM), conventionally treated swine manure (CTSM) and N fertilizer on grain yield of barley, applied N use efficiency (ANUE, kg·grain·kg-1 of applied N·ha-1), ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Treatments included spring and autumn applications of CTSM and ADSM at a 1x rate (10,000 and 7150 L·ha-1, respectively) applied every year, a 3x rate (30,000 and 21,450 L·ha-1, respectively) applied once at the beginning of the experiment, plus a treatment receiving commercial fertilizer (UAN at 60 kg·N·ha-1·yr-1) and a zero-N control. There was a significant grain yield response of barley to applied N in all three years. The ANUE of ADSM or CTSM applied once at the 3x rate were lower than annual applications at the 1x rate (grain yield by 595 kg·ha-1 and NFUE by 6 kg·grain·kg-1 of applied N·ha-1). On average, agronomic performance of ADSM was similar to CTSM. The APNU of N fertilizer was greater than the 3x rate but lower than the 1x rate of ADSM or CTSM. Ammonia loss from ADSM was similar to CTSM, except for much higher loss of NH3-N from CTSM at the 3x rate applied in the autumn (8100 g·N·ha-1) compared to the other treatments (1100 - 2600 g·N·ha-1). The percentage of applied N lost as N2O gas was generally higher for treatments receiving CTSM (4.0%) compared to ADSM (1.4%). In conclusion, the findings suggest that ADSM is equal or slightly better than CTSM in terms of agronomic performance, but has lower environmental impact.展开更多
Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the cu...Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the current study, a soil column experiment was conducted using the ^(15)N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizerderived N(fertilizer N). The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea(HAU). At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U. More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment. These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels. The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%. More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer. The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments. Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets. This is likely due to the abundance of the COO/C–N=O group in this HA component.展开更多
A study of an environmental assessment of dust fall and the associated heavy metal contents was conducted during the period from the first of March 2011 to the end of February 2012 at adjoining area of a phosphate fer...A study of an environmental assessment of dust fall and the associated heavy metal contents was conducted during the period from the first of March 2011 to the end of February 2012 at adjoining area of a phosphate fertilizer plant. Around the industrial area 8 dust fall stations were established and one of them was built upwind far from pollution activities to be taken as a control sample. Dust fall samples collected monthly weighed and then prepared to be analyzed through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) to obtain heavy metal concentration. Meteorological parameters influencing the distribution of dust fall such as wind speed and direction, temperature, humidity, rain fall and pressure were determined. Results showed that deposition flow rates were 38.2. 47.5, 57.7, 44.3, 39.4, 38.2, 42.7 and 5.9 g/m2·month for the sites No., 1, 2, 3, 4, 5, 6, 7 and 8 respectively, and were compared with the findings of other investigators of like industrial areas worldwide. Levels of heavy metal As, Cu, Pb, Zn, Cd, and Hg in the deposited dust fall were 3.30, 26.46, 22.33, 235.00, 4.53 and 3.80 μg/g respectively. Enrichment coefficients of the heavy metals in the dust fall were found to be significant and reached the values 1.81, 0.90, 0.85, 0.65, 0.41 and 0.35 for zinc, lead, cadmium, copper, mercury and arsenic respectively. The paper ends with results and recommendations suggesting a methodology to remediate the investigated area polluted with heavy metals and control measures for the fertilizer plant to reduce pollution into the surrounding environment.展开更多
The fertilizer industry faces a continuing challenge to improve its products to increase the fertilizer use efficiency and to minimize any possible adverse environmental impact.For this purpose,studies on the developm...The fertilizer industry faces a continuing challenge to improve its products to increase the fertilizer use efficiency and to minimize any possible adverse environmental impact.For this purpose,studies on the development of coated fertilizers have been done all over the world.In this paper,we are to introduce our coated urea“MEISTER”as the sophisticated fertilizer,with explaining the features and applications in actual fields.“MEISTER”is the coated urea with a mixture of polyolefin and silicate mineral.“MEISTER”has two releasing types.One is the linear type.Another is the sigmoidal type.Release of nitrogen from“MEISTER”mainly depends on temperature which allows precise prediction of nutrient release.Application experiments for rice,Chinese cabbage and long onion are introduced in this paper.Every experiment shows single basal application is possible by using“MEISTER”with keeping yield and high nitrogen recovery.Coated fertilizers show accurate release control of nutrients.The use of coated fertilizers brings:(a)efficient use of fertilizer resources,(b)reduction of environmental load by fertilizer,(c)labor saving.Thus applying coated fertilizers is definitely smart fertilization technology in agriculture.Coated fertilizers seem to closely meet the requirements of an ideal fertilizer.The problem is its high price compared to the normal rapid soluble fertilizer.Unit price of coated fertilizer is expensive on the surface,though total application cost of coated fertilizers is often cheaper than the cost of rapid soluble fertilizers.This sometime disturbs the spread of coated fertilizers.So,we have been trying to make an effort to reduce production cost and doing application enlargement trials of coated fertilizers for becoming more widespread.Through those studies and development,we believe coated fertilizers will contribute to agriculture more in the world.展开更多
The increase of the potash fertilizer dose in-duced a raise in efficiency influence of the ni-trogen fertilizer, optimisation of phosphorous fertilizer effect, enhancement of leaf protein production, expansion of assi...The increase of the potash fertilizer dose in-duced a raise in efficiency influence of the ni-trogen fertilizer, optimisation of phosphorous fertilizer effect, enhancement of leaf protein production, expansion of assimilating surface and yield growth. In the period of yield forma-tion, the parameters of delayed fluorescence of chlorophyll (DF) of leaf wholly corresponded with key factors that had a dramatic influence on the effectiveness of yield formation. The maximum level of DF amplitude mostly de-pended on the activity of nitrogen metabolism and presumably on active PSII concentration changes per square unit. Half-decay time of this amplitude was predominantly identified by the level of carbohydrate metabolism in the overall plant system, including the quantity of its products and, therefore, mostly by correspon-dence with yield. This is a biological base trig-gering the use of DF parameters for system analyses of plant production process.展开更多
Nitrogen fertilizer is an important factor for crop production. The N application strategies named as former nitrogen moved backward( FNMB) are tested in three ecological regions to optimize the N application in rice....Nitrogen fertilizer is an important factor for crop production. The N application strategies named as former nitrogen moved backward( FNMB) are tested in three ecological regions to optimize the N application in rice. The dry matter accumulation and distribution,yield and quality are studied to understand the formation of yield and quality of rice under different N application strategies. The result indicates that former nitrogen moved backward( FNMB) can increase tiller number and dry matter accumulation; effective ears and yield can be increased with the increase of fertilization; rational nitrogen application can help to establish scientific group structure,harmonize yield component,and then achieve high ratio of input to output and benefit.展开更多
A category of chromium (Cr)-containing fertilizers is represented by the fertilizers deriving from byproducts of tanning process. Their use is widespread because of their good agronomic response due to the high conten...A category of chromium (Cr)-containing fertilizers is represented by the fertilizers deriving from byproducts of tanning process. Their use is widespread because of their good agronomic response due to the high content of slow release or- ganic nitrogen (N) and carbon (C). They do not represent an environmental hazard because only the non-toxic form of Cr(III) is present. Productive processes may involve chemical, enzymatic or thermal hydrolysis. The final product is characterized by different contents of peptides and free amino acids depending on the type of hydrolysis. Legislation concerning Cr-containing fertilizers is controversial because often do not consider any scientific evidences;nevertheless, the European Union, the United States and countries as Italy, do not set the restriction to Cr(III) and generally only the presence of the toxic form, Cr(VI), is limited. Depending on its two main oxidation forms, Cr issue has been studied for many years. Several authors confirmed that Cr(VI) is carcinogenic, while Cr(III) is an essential trace element in human and animal diet. In soil Cr(III) has low mobility, whereas Cr(VI) is highly water soluble. However Cr(VI) in soil is quickly reduced to Cr(III);on the contrary oxidation of Cr(III) to Cr(VI) is rarely possible because particular conditions must occur. Only a very small fraction of Cr in soil is available to plant uptake and its translocation in edible parts is limited because it is immobilized in roots as Cr(III). Therefore risks of environmental pollution using these fertilizers are negligible;on the contrary they have positive environmental and agronomical effects. The aim of this review is to deal with the category of the organic fertilizers containing Cr derived from tannery processes focusing on its chemical, productive, legislative, environmental and agronomical aspects. Special attention is given to the ambiguous issue of Cr briefly summarizing the most important studies of the last forty years.展开更多
We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice variet...We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice varieties were assigned as main plot factors,and the integrated treatments were the subplot factors,including no-N fertilizer(N0),50%chemical fertilizer(CF)(CF50),100%CF(CF100),50%CF+50%poultry manure(PM)(CF50PM50),50%CF+50%cow manure(CM)(CF50CM50),and 50%CF+50%compost(CP)(CF50CP50).CF100 was equivalent to N at 85 kg/hm2.Manure was applied based on the estimated mineralizable nitrogen(EMN)level,which is dependent on total N(%)of each manure type.Manawthukha rice plants were taller with higher tiller number and dry matter content.However,higher soil-plant analysis development(SPAD)values were measured in Genkitsukushi throughout the crop growth period,resulting in higher seed-setting rate(%)and greater yield.At the same N level,CF50PM50 application in both rice varieties resulted in higher SPAD values,plant height and tiller number than CF100.CF50PM50 containing total N more than 4%supplied synchronized N for the demands of the rice plants,resulting in maximum dry matter,yield and yield components.CF50CM50 and CF50CP50 treatments containing total N less than 4%resulted in lower yields which were similar to CF100.These results indicated that integrating organic and inorganic fertilizers enhanced growth parameters and yields of Manawthukha and Genkitsukushi,while reducing the dose of chemical fertilizer.展开更多
Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardl...Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardly covers the needs of the population. To remedy this, growers systematically use mineral fertilizers. However, these fertilizers pollute the environment. To find an alternative to chemical fertilization and increase production, the effect of biofertilizers (Spaawet, Retone, Super Gro) compared with NPK mineral fertilizer was evaluated on Divo, Teriman, and Djonan F1 cultivars. The trial was set up in a factorial block design with three replications. Plant height, number of functional leaves, and crown diameter were assessed at 60 days after sowing (DAS). The time to 50% flowering, production time, and fruit yield were calculated. The results showed that the biofertilizer Retone induced the highest heights and number of functional leaves, with averages of 61.89 cm and 29.88 leaves, respectively. The diameter at the crown (17.77 mm) was highest with the NPK mineral fertilizer, and the shortest 50% flowering time, with an average of 47.61 days, was also obtained with the biofertilizer Retone. The NPK mineral fertilizer produced the longest production time, with an average of 35.25 days. The highest yields were obtained using Retone (11.07 t/ha) and NPK (9.52 t/ha) fertilizers. The “Divo<sub>*</sub>Retone” interaction produced the highest yield with an average of 12.19 t/ha. The biofertilizer Retone could therefore be used as an alternative fertilizer to chemical fertilization in okra crops, given its effect on the parameters assessed.展开更多
文摘In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria.
文摘Earthworms and its excreta (vermicast) promises to usher in the ‘Second Green Revolution’ by completely replacing the destructive agro chemicals which did more harm than good to both the farmers and their farmland. Earthworms restore & improve soil fertility and significantly boost crop productivity. Earthworms excreta (vermicast) is a nutritive ‘organic fertilizer’ rich in humus, NKP, micronutrients, beneficial soil microbes—‘nitrogenfixing & phosphate solubilizing bacteria’ & ‘actinomycets’ and growth hormones ‘auxins’, ‘gibberlins’ & ‘cytokinins’. Both earthworms and its vermicast & body liquid (vermiwash) are scientifically proving as both ‘growth promoters & protectors’ for crop plants. In our experiments with corn & wheat crops, tomato and eggplants it displayed excellent growth performances in terms of height of plants, color & texture of leaves, appearance of flowers & fruits, seed ears etc. as compared to chemical fertilizers and the conventional compost. There is also less incidences of ‘pest & disease attack’ and ‘reduced demand of water’ for irrigation in plants grown on vermicompost. Presence of live earthworms in soil also makes significant difference in flower and fruit formation in vegetable crops. Composts work as a ‘slowrelease fertilizer’ whereas chemical fertilizers release their nutrients rather quickly in soil and soon get depleted. Significant amount of ‘chemical nitrogen’ is lost from soil due to oxidation in sunlight. However, with application of vermicompost the ‘organic nitro gen’ tends to be released much faster from the excreted ‘humus’ by worms and those mineralised by them and the net overall efficiency of nitrogen (N) is considerably greater than that of chemical fertilizers. Availability of phosphorus (P) is sometimes much greater. Our study sh ows that earthworms and vermicompost can promote growth from 50 to 100% over conventional compost & 30 to 40% over chemical fertilizers besides protecting the soil and the agro ecosystem while producing ‘nutritive and tasty food’ at a much economical cost (at least 50 75% less) as compared to the costly chemical fertilizers.
文摘Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:
文摘Recently, 90 tons of human waste per day are collected from private residences, offices, and public facilities in Da Nang City. Meanwhile, farmers in this region have to allocate 10% - 20% of rice sales for purchasing chemical fertilizer. Therefore, it is essential to be adopted more inexpensive organic fertilizer. To deal with these problems, Japan International Cooperation Agency (JICA) has signed a contract with Da Nang city government about human waste treatment and production of organic biomass liquid fertilizer (OBLF) in 2015. The aims of this project are to promote the use of OBLF in farming and improve public awareness of environmental protection. 530 respondents were interviewed at Hoa Vang districts of Da Nang city, and data was analyzed by Contingent Valuation Method (CVM) under double bounded dichotomous choice approach. The results have revealed that 436 respondents (82%) agreed to use OBLF. The farmers’ WTP depends on factors including household income, experience in using organic fertilizer, awareness of environment and training of organic fertilizer in the past. The estimated price for OBLF was 94,856 VND (4.0 USD)/ton. The cost that farmers paid for OBLF was lower than that of current available chemical fertilizers in Da Nang city. This proves that marketability seems to be existed for OBLF product in Da Nang city. From these findings, the government should have policies to support and subsidize the farmers to encourage them to use OBLF in a large scale of cultivation. Furthermore, establishment of a market to consume the organic products harvested from cultivated areas using OBLF is also recommended.
基金This work was carried out under part of AICRP on Soil Test Crop Response,ICAR at PJTSAU,Hyderabad-500030,India.
文摘Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India during summer 2016-2018 in order to develop fertilizer prescriptions through IPNS for the desired yield targets of Sesamum under field conditions.The bases for making the fertilizer prescriptions viz.nutrient requirement(NR),contribution of nutrients from soil(Cs),fertilizer(Cf)and vermicompost(CVC)were computed using the field experimental data.Making use of these basic parameters,the fertilizer prescription equations were developed under NPK alone and under IPNS for the desired yield targets of Sesamum for a range of soil test values.The quantity of fertilizers contributed by the application of vermicompost was assessed.Nutrient requirement to produce 100 kg of sesame seed was worked out to be 10.20 kg N,3.90 kg P2O5 and 5.22 kg K2O.In the present investigation,the requirement of N was higher which is followed by K2O and P2O5.The requirement of N was 2.62 times higher than P and 1.95 times higher than K.The percent contribution of N,P and K was 12.25,15.75 and 6.00 from soils,41.68,22.85 and 59.97 from fertilizer and 9.87,6.74 and 18.65 from organic manures,respectively.Thus the Inductive cum Targeted Yield Model used to develop fertilizer prescription equations provides a strong basis for soil fertility maintenance consistent with high productivity and efficient nutrient management in farming for sustainable and enduring agriculture.
文摘[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers.
基金supported by the Independent Innovation and Achievement Transformation Special Project of Shandong Province (Grant Nos. 2014ZZCX07106, 2014ZZCX07402)
文摘In this paper, aiming at the problems of insufficient soil nutrients and high salt content in Wudi core demonstration area of Bohai Granary, a monitoring and management system of water, fertilizer and salt in saline-alkaline farmland based on WebGIS was established in order to monitor and control water, fertilizer and salt. Based on the Windows.NET platform, using B/S mode of operation architecture and Visual Studio 2010 as the software development environment, the related components in ArcGIS Engine were invoked by ArcGIS API for Silverlirht, and the WEB system was developed by C# and XMAL language. Based on the principle of water, fertilizer and salt balance, a monitoring model and a regulation model for water, salt and nutrients were established. Intelligent analysis and application of farmland soil data were realized, and a precision agriculture system with data query, early warning diagnosis, monitoring and control of water, fertilizer and salt was formed. And the "water and salt homologue, water supply due to demand, adequate and multiple" irrigation scheme and the salt and alkali reduction scheme of "synergistic conditioning of agents and nutrients" and a nutrient regulation plan for "stabilizing nitrogen, increasing phosphorus, supplementing potassium at the discretion" and "quick-acting combining slow release" were put forward. Compared with the period without monitoring and control of water and salt, the effect of water saving and fertilizer saving was improved, and the yield of wheat and maize was also significantly increased. It provided guidance for local users to increase crop production and income, and greatly improved the utilization of resources and grain production.
文摘Different crops need different kinds of nutrients. In this paper,formula of special fertilizer for common field crops in Guangxi is explored from the angle of grain crops,fruits,vegetables,sugar crops,oil crops,etc.,and corresponding production equipment and methods are provided,which could convenience for agricultural precision fertilization and theoretical basis and technical reference for cost saving and efficiency increasing of fertilizer.
基金supported by the earmarked fund for China Agriculture Research System (CARS-22)the Key Special Projects in National Key Research and Development Plan of China (2017YFD0301504 and 2016YFD0300900)+1 种基金the Scientific and Technological Innovation Project in Hunan Academy of Agricultural Sciences, China (2017JC47)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-18)
文摘The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv). We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha^–1). Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input (22.5 Mg ha^–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.
文摘Soybean and lentil are important legume crops in southern Saskatchewan (SK) that can supply the majority of their nitrogen (N) requirement through biological N fixation (BNF). However, the onset of BNF can be slow in cold;dry prairie soils and a small amount of seed-row placed fertilizer containing both N and phosphorus (P) may benefit the crop. Nevertheless, high rates of fertilizer in close proximity to the seed can also cause injury. This study was conducted to determine the response of lentil and soybean to a starter N-P fertilizer blend applied in the seed-row. A farm field located at the boundary of the Brown and Dark Brown soil zones in south-central Saskatchewan was selected to evaluate the effect of seed-row placed N-P fertilizer blend: 50% Urea + 50% mono-ammonium phosphate (MAP) applied at 0, 10, 20 and 30 kg N and P2O5 ha-1 on emergence, yield, and nutrient uptake. The proportion of nitrogen derived from fixation (ndff) was determined in the soybean using N-15 dilution technique. The rate of 10 kg N and P2O5 ha-1 was found to be the rate that did not significantly reduce emergence, stand count or proportion of N derived from fixation, and was sufficient to maximize yield, N and P uptake for both soybean and lentil under field conditions. Rates higher than 10 kg N ha-1 in the seed row as starter 28-26-0 blend reduced emergence and decreased the proportion of ndff.
文摘A field experiment was conducted at El-Serw Agricultural Research Station, Damietta Governorate, Egypt during 2016/2017 and 2017/2018 seasons to reduce mineral N inputs of sugar beet with increased land use efficiency and profitability under intercropping conditions. Seven treatments included five treatments (90 kg nitrogen “N” + 30 m3 farm yard manure “FYM”/fad, 80 kg N +30 m3 FYM/fad, 70 kg N +30 m3 FYM/fad and 400 g of Cerealine + 30 m3 FYM/fad for intercropping faba bean cultivar Spanish with sugar beet cultivar Gloria) and two treatments (90 and 20 kg N/fad for solid culture of sugar beet and faba bean, respectively, as recommended mineral N fertilizer rate) were compared in a randomized complete block design with three replications. Solid culture of sugar beet with the application of recommended rate (90 kg N/fad) gave the highest top, root and sugar yields/fad, as well as the percentage of purity compared with the other treatments in both seasons. Intercropping faba bean with sugar beet plants with application of 90 kg N + 30 m3 FYM/fad gave the highest number of leaves/plant, leaf area/plant, root length, root diameter and root weight/plant followed by intercropped sugar beet plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. On the other hand, intercropped sugar beet that received 400 g of Cerealine + 30 m3 FYM/fad had the highest percentages of T.S.S. and sucrose followed by 70 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. Solid culture of faba bean with the application of 20 kg N/fad gave the highest plant height, number of seeds/pod and seed yield/fad, meanwhile the highest number of branches/plant and pod length were achieved by intercropping faba bean with sugar beet with application of 90 kg N + 30 m3 FYM/fad followed by intercropped faba bean plants that fertilized with 80 kg N + 30 m3 FYM/fad compared with the other treatments in both seasons. However, intercropped faba bean plants that fertilized with 70 kg N + 30 m3 FYM/fad gave the highest number of pods per plant, number of seeds per pod, seed index and seed yield per plant compared with the other treatments in both seasons. Land equivalent ratio (LER), land equivalent coefficient (LEC) and relative crowding coefficient (RCC) were high by intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad indicating yield advantage was achieved. The value of aggressivity (Agg) of sugar beet was negative for all combinations indicating that sugar beet is dominated component in the present study. Intercropping faba bean with sugar beet with the application of 80 kg N + 30 m3 FYM/fad achieved higher total income and monetary advantage index (MAI) than the other treatments. Growing sugar beet plants in both sides of beds (1.2 m width) with one faba bean row in middle of sugar beet beds with the application of 80 kg N + 30 m3 FYM/fad decreased mineral N fertilizer rate by 10.00% of the recommended sugar beet mineral N fertilizer rate, as well as increased land usage and profitability for Egyptian farmers compared with sugar beet solid culture.
文摘Anaerobic digestion is a promising technology that could provide an option for managing animal waste with reduced greenhouse gas emissions. A three-year (2006-2008) field experiment was conducted at Star City, Saskatchewan, Canada, to compare the effects of land-applied anaerobically digested swine manure (ADSM), conventionally treated swine manure (CTSM) and N fertilizer on grain yield of barley, applied N use efficiency (ANUE, kg·grain·kg-1 of applied N·ha-1), ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Treatments included spring and autumn applications of CTSM and ADSM at a 1x rate (10,000 and 7150 L·ha-1, respectively) applied every year, a 3x rate (30,000 and 21,450 L·ha-1, respectively) applied once at the beginning of the experiment, plus a treatment receiving commercial fertilizer (UAN at 60 kg·N·ha-1·yr-1) and a zero-N control. There was a significant grain yield response of barley to applied N in all three years. The ANUE of ADSM or CTSM applied once at the 3x rate were lower than annual applications at the 1x rate (grain yield by 595 kg·ha-1 and NFUE by 6 kg·grain·kg-1 of applied N·ha-1). On average, agronomic performance of ADSM was similar to CTSM. The APNU of N fertilizer was greater than the 3x rate but lower than the 1x rate of ADSM or CTSM. Ammonia loss from ADSM was similar to CTSM, except for much higher loss of NH3-N from CTSM at the 3x rate applied in the autumn (8100 g·N·ha-1) compared to the other treatments (1100 - 2600 g·N·ha-1). The percentage of applied N lost as N2O gas was generally higher for treatments receiving CTSM (4.0%) compared to ADSM (1.4%). In conclusion, the findings suggest that ADSM is equal or slightly better than CTSM in terms of agronomic performance, but has lower environmental impact.
基金supported by the National Natural Science Foundation of China (31601827)the National Key Research and Development Program of China (2016YFD0200402)
文摘Humic acid(HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen(N) loss. However, there is little consensus on the efficacy of different HA components. In the current study, a soil column experiment was conducted using the ^(15)N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizerderived N(fertilizer N). The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea(HAU). At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U. More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment. These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels. The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%. More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer. The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments. Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets. This is likely due to the abundance of the COO/C–N=O group in this HA component.
文摘A study of an environmental assessment of dust fall and the associated heavy metal contents was conducted during the period from the first of March 2011 to the end of February 2012 at adjoining area of a phosphate fertilizer plant. Around the industrial area 8 dust fall stations were established and one of them was built upwind far from pollution activities to be taken as a control sample. Dust fall samples collected monthly weighed and then prepared to be analyzed through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) to obtain heavy metal concentration. Meteorological parameters influencing the distribution of dust fall such as wind speed and direction, temperature, humidity, rain fall and pressure were determined. Results showed that deposition flow rates were 38.2. 47.5, 57.7, 44.3, 39.4, 38.2, 42.7 and 5.9 g/m2·month for the sites No., 1, 2, 3, 4, 5, 6, 7 and 8 respectively, and were compared with the findings of other investigators of like industrial areas worldwide. Levels of heavy metal As, Cu, Pb, Zn, Cd, and Hg in the deposited dust fall were 3.30, 26.46, 22.33, 235.00, 4.53 and 3.80 μg/g respectively. Enrichment coefficients of the heavy metals in the dust fall were found to be significant and reached the values 1.81, 0.90, 0.85, 0.65, 0.41 and 0.35 for zinc, lead, cadmium, copper, mercury and arsenic respectively. The paper ends with results and recommendations suggesting a methodology to remediate the investigated area polluted with heavy metals and control measures for the fertilizer plant to reduce pollution into the surrounding environment.
文摘The fertilizer industry faces a continuing challenge to improve its products to increase the fertilizer use efficiency and to minimize any possible adverse environmental impact.For this purpose,studies on the development of coated fertilizers have been done all over the world.In this paper,we are to introduce our coated urea“MEISTER”as the sophisticated fertilizer,with explaining the features and applications in actual fields.“MEISTER”is the coated urea with a mixture of polyolefin and silicate mineral.“MEISTER”has two releasing types.One is the linear type.Another is the sigmoidal type.Release of nitrogen from“MEISTER”mainly depends on temperature which allows precise prediction of nutrient release.Application experiments for rice,Chinese cabbage and long onion are introduced in this paper.Every experiment shows single basal application is possible by using“MEISTER”with keeping yield and high nitrogen recovery.Coated fertilizers show accurate release control of nutrients.The use of coated fertilizers brings:(a)efficient use of fertilizer resources,(b)reduction of environmental load by fertilizer,(c)labor saving.Thus applying coated fertilizers is definitely smart fertilization technology in agriculture.Coated fertilizers seem to closely meet the requirements of an ideal fertilizer.The problem is its high price compared to the normal rapid soluble fertilizer.Unit price of coated fertilizer is expensive on the surface,though total application cost of coated fertilizers is often cheaper than the cost of rapid soluble fertilizers.This sometime disturbs the spread of coated fertilizers.So,we have been trying to make an effort to reduce production cost and doing application enlargement trials of coated fertilizers for becoming more widespread.Through those studies and development,we believe coated fertilizers will contribute to agriculture more in the world.
文摘The increase of the potash fertilizer dose in-duced a raise in efficiency influence of the ni-trogen fertilizer, optimisation of phosphorous fertilizer effect, enhancement of leaf protein production, expansion of assimilating surface and yield growth. In the period of yield forma-tion, the parameters of delayed fluorescence of chlorophyll (DF) of leaf wholly corresponded with key factors that had a dramatic influence on the effectiveness of yield formation. The maximum level of DF amplitude mostly de-pended on the activity of nitrogen metabolism and presumably on active PSII concentration changes per square unit. Half-decay time of this amplitude was predominantly identified by the level of carbohydrate metabolism in the overall plant system, including the quantity of its products and, therefore, mostly by correspon-dence with yield. This is a biological base trig-gering the use of DF parameters for system analyses of plant production process.
文摘Nitrogen fertilizer is an important factor for crop production. The N application strategies named as former nitrogen moved backward( FNMB) are tested in three ecological regions to optimize the N application in rice. The dry matter accumulation and distribution,yield and quality are studied to understand the formation of yield and quality of rice under different N application strategies. The result indicates that former nitrogen moved backward( FNMB) can increase tiller number and dry matter accumulation; effective ears and yield can be increased with the increase of fertilization; rational nitrogen application can help to establish scientific group structure,harmonize yield component,and then achieve high ratio of input to output and benefit.
文摘A category of chromium (Cr)-containing fertilizers is represented by the fertilizers deriving from byproducts of tanning process. Their use is widespread because of their good agronomic response due to the high content of slow release or- ganic nitrogen (N) and carbon (C). They do not represent an environmental hazard because only the non-toxic form of Cr(III) is present. Productive processes may involve chemical, enzymatic or thermal hydrolysis. The final product is characterized by different contents of peptides and free amino acids depending on the type of hydrolysis. Legislation concerning Cr-containing fertilizers is controversial because often do not consider any scientific evidences;nevertheless, the European Union, the United States and countries as Italy, do not set the restriction to Cr(III) and generally only the presence of the toxic form, Cr(VI), is limited. Depending on its two main oxidation forms, Cr issue has been studied for many years. Several authors confirmed that Cr(VI) is carcinogenic, while Cr(III) is an essential trace element in human and animal diet. In soil Cr(III) has low mobility, whereas Cr(VI) is highly water soluble. However Cr(VI) in soil is quickly reduced to Cr(III);on the contrary oxidation of Cr(III) to Cr(VI) is rarely possible because particular conditions must occur. Only a very small fraction of Cr in soil is available to plant uptake and its translocation in edible parts is limited because it is immobilized in roots as Cr(III). Therefore risks of environmental pollution using these fertilizers are negligible;on the contrary they have positive environmental and agronomical effects. The aim of this review is to deal with the category of the organic fertilizers containing Cr derived from tannery processes focusing on its chemical, productive, legislative, environmental and agronomical aspects. Special attention is given to the ambiguous issue of Cr briefly summarizing the most important studies of the last forty years.
基金supported by Japanese Government (MEXT) Scholarship Program 2016–2019, Japan
文摘We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice varieties were assigned as main plot factors,and the integrated treatments were the subplot factors,including no-N fertilizer(N0),50%chemical fertilizer(CF)(CF50),100%CF(CF100),50%CF+50%poultry manure(PM)(CF50PM50),50%CF+50%cow manure(CM)(CF50CM50),and 50%CF+50%compost(CP)(CF50CP50).CF100 was equivalent to N at 85 kg/hm2.Manure was applied based on the estimated mineralizable nitrogen(EMN)level,which is dependent on total N(%)of each manure type.Manawthukha rice plants were taller with higher tiller number and dry matter content.However,higher soil-plant analysis development(SPAD)values were measured in Genkitsukushi throughout the crop growth period,resulting in higher seed-setting rate(%)and greater yield.At the same N level,CF50PM50 application in both rice varieties resulted in higher SPAD values,plant height and tiller number than CF100.CF50PM50 containing total N more than 4%supplied synchronized N for the demands of the rice plants,resulting in maximum dry matter,yield and yield components.CF50CM50 and CF50CP50 treatments containing total N less than 4%resulted in lower yields which were similar to CF100.These results indicated that integrating organic and inorganic fertilizers enhanced growth parameters and yields of Manawthukha and Genkitsukushi,while reducing the dose of chemical fertilizer.
文摘Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardly covers the needs of the population. To remedy this, growers systematically use mineral fertilizers. However, these fertilizers pollute the environment. To find an alternative to chemical fertilization and increase production, the effect of biofertilizers (Spaawet, Retone, Super Gro) compared with NPK mineral fertilizer was evaluated on Divo, Teriman, and Djonan F1 cultivars. The trial was set up in a factorial block design with three replications. Plant height, number of functional leaves, and crown diameter were assessed at 60 days after sowing (DAS). The time to 50% flowering, production time, and fruit yield were calculated. The results showed that the biofertilizer Retone induced the highest heights and number of functional leaves, with averages of 61.89 cm and 29.88 leaves, respectively. The diameter at the crown (17.77 mm) was highest with the NPK mineral fertilizer, and the shortest 50% flowering time, with an average of 47.61 days, was also obtained with the biofertilizer Retone. The NPK mineral fertilizer produced the longest production time, with an average of 35.25 days. The highest yields were obtained using Retone (11.07 t/ha) and NPK (9.52 t/ha) fertilizers. The “Divo<sub>*</sub>Retone” interaction produced the highest yield with an average of 12.19 t/ha. The biofertilizer Retone could therefore be used as an alternative fertilizer to chemical fertilization in okra crops, given its effect on the parameters assessed.