Combinatorial chemistry involves the chemical or biological synthesis of diverse variation of the structures of a target molecule and the library is then screened for variants of desirable target properties. The appro...Combinatorial chemistry involves the chemical or biological synthesis of diverse variation of the structures of a target molecule and the library is then screened for variants of desirable target properties. The approach has been a focus of research activity in drug discovery and biotechnology. This report is to demonstrate the application of enzyme technology using the concept of combinatorial chemistry as a novel approach for the bioconversion of plant fibers. Wheat insoluble fiber was subjected to combinatorial enzyme digestion to create structural variants of feruloyl oligosaccharides (FOS). Fractionation and screening resulted in the isolation of a fraction of bioactive FOS species showing antimicrobial activity. These results demonstrate the feasibility and usefulness of the combinatorial enzyme technique in the transformation of plant biomass to value-added products.展开更多
文摘Combinatorial chemistry involves the chemical or biological synthesis of diverse variation of the structures of a target molecule and the library is then screened for variants of desirable target properties. The approach has been a focus of research activity in drug discovery and biotechnology. This report is to demonstrate the application of enzyme technology using the concept of combinatorial chemistry as a novel approach for the bioconversion of plant fibers. Wheat insoluble fiber was subjected to combinatorial enzyme digestion to create structural variants of feruloyl oligosaccharides (FOS). Fractionation and screening resulted in the isolation of a fraction of bioactive FOS species showing antimicrobial activity. These results demonstrate the feasibility and usefulness of the combinatorial enzyme technique in the transformation of plant biomass to value-added products.