恶意域名的变种随着检测方法的增多而不断丰富,现有模型对于该类恶意域名的检测精度不高。为此,提出一种基于迁移学习的小样本变种域名检测算法。通过构造双向长短时记忆神经网络(bi-directional long short term memory,BiLSTM)和卷积...恶意域名的变种随着检测方法的增多而不断丰富,现有模型对于该类恶意域名的检测精度不高。为此,提出一种基于迁移学习的小样本变种域名检测算法。通过构造双向长短时记忆神经网络(bi-directional long short term memory,BiLSTM)和卷积神经网络(convolutional neural networks,CNN)的组合模型BiLSTM-CNN,提取域名上下文特征和局部语义特征,利用数据量充足的多家族恶意域名数据集进行预训练;迁移BiLSTM-CNN模型预训练的参数到小样本的恶意域名检测模型中,对新出现或新变种的小样本恶意域名进行检测。在多个小样本数据集和数据量充足的多家族恶意域名集上进行测试,运行结果表明,所提模型在数据量充足的多家族恶意域名数据集上可以实现95.17%的平均检测精度,在多个小样本数据集可以实现94.26%的平均检测精度。与当前经典的检测模型相比,所提模型整体检测性能表现良好。展开更多
文摘恶意域名的变种随着检测方法的增多而不断丰富,现有模型对于该类恶意域名的检测精度不高。为此,提出一种基于迁移学习的小样本变种域名检测算法。通过构造双向长短时记忆神经网络(bi-directional long short term memory,BiLSTM)和卷积神经网络(convolutional neural networks,CNN)的组合模型BiLSTM-CNN,提取域名上下文特征和局部语义特征,利用数据量充足的多家族恶意域名数据集进行预训练;迁移BiLSTM-CNN模型预训练的参数到小样本的恶意域名检测模型中,对新出现或新变种的小样本恶意域名进行检测。在多个小样本数据集和数据量充足的多家族恶意域名集上进行测试,运行结果表明,所提模型在数据量充足的多家族恶意域名数据集上可以实现95.17%的平均检测精度,在多个小样本数据集可以实现94.26%的平均检测精度。与当前经典的检测模型相比,所提模型整体检测性能表现良好。