The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make th...The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make the task difficult.Therefore,to enhance the accuracy of the fine-grained ship image recognition,we design a fine-grained ship image recognition network based on bilinear convolutional neural network(BCNN)with Inception and additive margin Softmax(AM-Softmax).This network improves the BCNN in two aspects.Firstly,by introducing Inception branches to the BCNN network,it is helpful to enhance the ability of extracting comprehensive features from ships.Secondly,by adding margin values to the decision boundary,the AM-Softmax function can better extend the inter-class differences and reduce the intra-class differences.In addition,as there are few publicly available datasets for fine-grained ship image recognition,we construct a Ship-43 dataset containing 47,300 ship images belonging to 43 categories.Experimental results on the constructed Ship-43 dataset demonstrate that our method can effectively improve the accuracy of ship image recognition,which is 4.08%higher than the BCNN model.Moreover,comparison results on the other three public fine-grained datasets(Cub,Cars,and Aircraft)further validate the effectiveness of the proposed method.展开更多
The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregula...The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.展开更多
Localizing discriminative object parts(e.g.,bird head)is crucial for fine-grained classification tasks,especially for the more challenging fine-grained few-shot scenario.Previous work always relies on the learned obje...Localizing discriminative object parts(e.g.,bird head)is crucial for fine-grained classification tasks,especially for the more challenging fine-grained few-shot scenario.Previous work always relies on the learned object parts in a unified manner,where they attend the same object parts(even with common attention weights)for different few-shot episodic tasks.In this paper,we propose that it should adaptively capture the task-specific object parts that require attention for each few-shot task,since the parts that can distinguish different tasks are naturally different.Specifically for a few-shot task,after obtaining part-level deep features,we learn a task-specific part-based dictionary for both aligning and reweighting part features in an episode.Then,part-level categorical prototypes are generated based on the part features of support data,which are later employed by calculating distances to classify query data for evaluation.To retain the discriminative ability of the part-level representations(i.e.,part features and part prototypes),we design an optimal transport solution that also utilizes query data in a transductive way to optimize the aforementioned distance calculation for the final predictions.Extensive experiments on five fine-grained benchmarks show the superiority of our method,especially for the 1-shot setting,gaining 0.12%,8.56%and 5.87%improvements over state-of-the-art methods on CUB,Stanford Dogs,and Stanford Cars,respectively.展开更多
Hierarchical multi-granularity image classification is a challenging task that aims to tag each given image with multiple granularity labels simultaneously.Existing methods tend to overlook that different image region...Hierarchical multi-granularity image classification is a challenging task that aims to tag each given image with multiple granularity labels simultaneously.Existing methods tend to overlook that different image regions contribute differently to label prediction at different granularities,and also insufficiently consider relationships between the hierarchical multi-granularity labels.We introduce a sequence-to-sequence mechanism to overcome these two problems and propose a multi-granularity sequence generation(MGSG)approach for the hierarchical multi-granularity image classification task.Specifically,we introduce a transformer architecture to encode the image into visual representation sequences.Next,we traverse the taxonomic tree and organize the multi-granularity labels into sequences,and vectorize them and add positional information.The proposed multi-granularity sequence generation method builds a decoder that takes visual representation sequences and semantic label embedding as inputs,and outputs the predicted multi-granularity label sequence.The decoder models dependencies and correlations between multi-granularity labels through a masked multi-head self-attention mechanism,and relates visual information to the semantic label information through a crossmodality attention mechanism.In this way,the proposed method preserves the relationships between labels at different granularity levels and takes into account the influence of different image regions on labels with different granularities.Evaluations on six public benchmarks qualitatively and quantitatively demonstrate the advantages of the proposed method.Our project is available at https://github.com/liuxindazz/mgs.展开更多
Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to re...Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to realize accurate recognition. To solve this problem, a mobile phone recognition method based on bilinear-convolutional neural network(B-CNN) is proposed in this paper.First, a feature extraction model, based on B-CNN, is designed to adaptively extract local features from the images of secondhand mobile phones. Second, a joint loss function, constructed by center distance and softmax, is developed to reduce the interclass feature distance during the training process. Third, a parameter downscaling method, derived from the kernel discriminant analysis algorithm, is introduced to eliminate redundant features in B-CNN. Finally, the experimental results demonstrate that the B-CNN method can achieve higher accuracy than some existing methods.展开更多
Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative features of fine-grained images are often located in local areas of the image, while most of the existi...Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative features of fine-grained images are often located in local areas of the image, while most of the existing few-shot learning image classification methods only use top-level features and adopt a single measure. In that way, the local features of the sample cannot be learned well. In response to this problem, ensemble relation network with multi-level measure(ERN-MM) is proposed in this paper. It adds the relation modules in the shallow feature space to compare the similarity between the samples in the local features, and finally integrates the similarity scores from the feature spaces to assign the label of the query samples. So the proposed method ERN-MM can use local details and global information of different grains. Experimental results on different fine-grained datasets show that the proposed method achieves good classification performance and also proves its rationality.展开更多
基金This work is supported by the National Natural Science Foundation of China(61806013,61876010,62176009,and 61906005)General project of Science and Technology Planof Beijing Municipal Education Commission(KM202110005028)+2 种基金Beijing Municipal Education Commission Project(KZ201910005008)Project of Interdisciplinary Research Institute of Beijing University of Technology(2021020101)International Research Cooperation Seed Fund of Beijing University of Technology(2021A01).
文摘The fine-grained ship image recognition task aims to identify various classes of ships.However,small inter-class,large intra-class differences between ships,and lacking of training samples are the reasons that make the task difficult.Therefore,to enhance the accuracy of the fine-grained ship image recognition,we design a fine-grained ship image recognition network based on bilinear convolutional neural network(BCNN)with Inception and additive margin Softmax(AM-Softmax).This network improves the BCNN in two aspects.Firstly,by introducing Inception branches to the BCNN network,it is helpful to enhance the ability of extracting comprehensive features from ships.Secondly,by adding margin values to the decision boundary,the AM-Softmax function can better extend the inter-class differences and reduce the intra-class differences.In addition,as there are few publicly available datasets for fine-grained ship image recognition,we construct a Ship-43 dataset containing 47,300 ship images belonging to 43 categories.Experimental results on the constructed Ship-43 dataset demonstrate that our method can effectively improve the accuracy of ship image recognition,which is 4.08%higher than the BCNN model.Moreover,comparison results on the other three public fine-grained datasets(Cub,Cars,and Aircraft)further validate the effectiveness of the proposed method.
基金The support of this research was by Hubei Provincial Natural Science Foundation(2022CFB449)Science Research Foundation of Education Department of Hubei Province(B2020061),are gratefully acknowledged.
文摘The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.
基金supported by National Natural Science Foundation of China(No.62272231)Natural Science Foundation of Jiangsu Province of China(No.BK 20210340)+2 种基金National Key R&D Program of China(No.2021YFA1001100)the Fundamental Research Funds for the Central Universities,China(No.NJ2022028)CAAI-Huawei MindSpore Open Fund,China.
文摘Localizing discriminative object parts(e.g.,bird head)is crucial for fine-grained classification tasks,especially for the more challenging fine-grained few-shot scenario.Previous work always relies on the learned object parts in a unified manner,where they attend the same object parts(even with common attention weights)for different few-shot episodic tasks.In this paper,we propose that it should adaptively capture the task-specific object parts that require attention for each few-shot task,since the parts that can distinguish different tasks are naturally different.Specifically for a few-shot task,after obtaining part-level deep features,we learn a task-specific part-based dictionary for both aligning and reweighting part features in an episode.Then,part-level categorical prototypes are generated based on the part features of support data,which are later employed by calculating distances to classify query data for evaluation.To retain the discriminative ability of the part-level representations(i.e.,part features and part prototypes),we design an optimal transport solution that also utilizes query data in a transductive way to optimize the aforementioned distance calculation for the final predictions.Extensive experiments on five fine-grained benchmarks show the superiority of our method,especially for the 1-shot setting,gaining 0.12%,8.56%and 5.87%improvements over state-of-the-art methods on CUB,Stanford Dogs,and Stanford Cars,respectively.
基金supported by National Key R&D Program of China(2019YFC1521102)the National Natural Science Foundation of China(61932003)Beijing Science and Technology Plan(Z221100007722004).
文摘Hierarchical multi-granularity image classification is a challenging task that aims to tag each given image with multiple granularity labels simultaneously.Existing methods tend to overlook that different image regions contribute differently to label prediction at different granularities,and also insufficiently consider relationships between the hierarchical multi-granularity labels.We introduce a sequence-to-sequence mechanism to overcome these two problems and propose a multi-granularity sequence generation(MGSG)approach for the hierarchical multi-granularity image classification task.Specifically,we introduce a transformer architecture to encode the image into visual representation sequences.Next,we traverse the taxonomic tree and organize the multi-granularity labels into sequences,and vectorize them and add positional information.The proposed multi-granularity sequence generation method builds a decoder that takes visual representation sequences and semantic label embedding as inputs,and outputs the predicted multi-granularity label sequence.The decoder models dependencies and correlations between multi-granularity labels through a masked multi-head self-attention mechanism,and relates visual information to the semantic label information through a crossmodality attention mechanism.In this way,the proposed method preserves the relationships between labels at different granularity levels and takes into account the influence of different image regions on labels with different granularities.Evaluations on six public benchmarks qualitatively and quantitatively demonstrate the advantages of the proposed method.Our project is available at https://github.com/liuxindazz/mgs.
基金supported by the National Key Program of China(Grant No.2018YFC1900800-5)the National Natural Science Foundation of China(Grant Nos.61890930-5 and 61622301)the Beijing University Outstanding Young Scientist Program(Grant No.BJJWZYJH0120191000-5020)。
文摘Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to realize accurate recognition. To solve this problem, a mobile phone recognition method based on bilinear-convolutional neural network(B-CNN) is proposed in this paper.First, a feature extraction model, based on B-CNN, is designed to adaptively extract local features from the images of secondhand mobile phones. Second, a joint loss function, constructed by center distance and softmax, is developed to reduce the interclass feature distance during the training process. Third, a parameter downscaling method, derived from the kernel discriminant analysis algorithm, is introduced to eliminate redundant features in B-CNN. Finally, the experimental results demonstrate that the B-CNN method can achieve higher accuracy than some existing methods.
基金supported by the National Natural Science Foundation of China(62176110,62111530146,61906080)Young Doctoral Fund of Education Department of Gansu Province(2021QB-038)。
文摘Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative features of fine-grained images are often located in local areas of the image, while most of the existing few-shot learning image classification methods only use top-level features and adopt a single measure. In that way, the local features of the sample cannot be learned well. In response to this problem, ensemble relation network with multi-level measure(ERN-MM) is proposed in this paper. It adds the relation modules in the shallow feature space to compare the similarity between the samples in the local features, and finally integrates the similarity scores from the feature spaces to assign the label of the query samples. So the proposed method ERN-MM can use local details and global information of different grains. Experimental results on different fine-grained datasets show that the proposed method achieves good classification performance and also proves its rationality.