The few-shot named entity recognition(NER)task aims to train a robust model in the source domain and transfer it to the target domain with very few annotated data.Currently,some approaches rely on the prototypical net...The few-shot named entity recognition(NER)task aims to train a robust model in the source domain and transfer it to the target domain with very few annotated data.Currently,some approaches rely on the prototypical network for NER.However,these approaches often overlook the spatial relations in the span boundary matrix because entity words tend to depend more on adjacent words.We propose using a multidimensional convolution module to address this limitation to capture short-distance spatial dependencies.Additionally,we uti-lize an improved prototypical network and assign different weights to different samples that belong to the same class,thereby enhancing the performance of the few-shot NER task.Further experimental analysis demonstrates that our approach has significantly improved over baseline models across multiple datasets.展开更多
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders...As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.展开更多
Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and c...Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and categorize them into predefined entity types.This process can provide basic support for the automatic construction of knowledge bases.In contrast to general texts,biomedical texts frequently contain numerous nested entities and local dependencies among these entities,presenting significant challenges to prevailing NER models.To address these issues,we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer(RoBGP).Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically generate word-level initial vectors.It then incorporates a Bidirectional Long Short-Term Memory network for capturing bidirectional semantic information,effectively addressing the issue of long-distance dependencies.Furthermore,the Global Pointer model is employed to comprehensively recognize all nested entities in the text.We conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior performance of RoBGP over several baseline models.This research confirms the effectiveness of RoBGP in Chinese biomedical NER,providing reliable technical support for biomedical information extraction and knowledge base construction.展开更多
Named entity recognition(NER)is a fundamental task of information extraction(IE),and it has attracted considerable research attention in recent years.The abundant annotated English NER datasets have significantly prom...Named entity recognition(NER)is a fundamental task of information extraction(IE),and it has attracted considerable research attention in recent years.The abundant annotated English NER datasets have significantly promoted the NER research in the English field.By contrast,much fewer efforts are made to the Chinese NER research,especially in the scientific domain,due to the scarcity of Chinese NER datasets.To alleviate this problem,we present aChinese scientificNER dataset–SciCN,which contains entity annotations of titles and abstracts derived from 3,500 scientific papers.We manually annotate a total of 62,059 entities,and these entities are classified into six types.Compared to English scientific NER datasets,SciCN has a larger scale and is more diverse,for it not only contains more paper abstracts but these abstracts are derived from more research fields.To investigate the properties of SciCN and provide baselines for future research,we adapt a number of previous state-of-theart Chinese NER models to evaluate SciCN.Experimental results show that SciCN is more challenging than other Chinese NER datasets.In addition,previous studies have proven the effectiveness of using lexicons to enhance Chinese NER models.Motivated by this fact,we provide a scientific domain-specific lexicon.Validation results demonstrate that our lexicon delivers better performance gains than lexicons of other domains.We hope that the SciCN dataset and the lexicon will enable us to benchmark the NER task regarding the Chinese scientific domain and make progress for future research.The dataset and lexicon are available at:https://github.com/yangjingla/SciCN.git.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
Few-shot named entity recognition(NER)aims to identify named entities in new domains using a limited amount of annotated data.Previous methods divided this task into entity span detection and entity classification,ach...Few-shot named entity recognition(NER)aims to identify named entities in new domains using a limited amount of annotated data.Previous methods divided this task into entity span detection and entity classification,achieving good results.However these methods are limited by the imbalance between the entity and non-entity categories due to the use of sequence labeling for entity span detection.To this end,a point-proto network(PPN)combining pointer and prototypical networks was proposed.Specifically,the pointer network generates the position of entities in sentences in the entity span detection stage.The prototypical network builds semantic prototypes of entity types and classifies entities based on their distance from these prototypes in the entity classification stage.Moreover,the low-rank adaptation(LoRA)fine-tuning method,which involves freezing the pre-trained weights and injecting a trainable decomposition matrix,reduces the parameters that need to be trained and saved.Extensive experiments on the few-shot NER Dataset(Few-NERD)and Cross-Dataset demonstrate the superiority of PPN in this domain.展开更多
Named Entity Recognition(NER)is crucial for extracting structured information from text.While traditional methods rely on rules,Conditional Random Fields(CRFs),or deep learning,the advent of large-scale Pre-trained La...Named Entity Recognition(NER)is crucial for extracting structured information from text.While traditional methods rely on rules,Conditional Random Fields(CRFs),or deep learning,the advent of large-scale Pre-trained Language Models(PLMs)offers new possibilities.PLMs excel at contextual learning,potentially simplifying many natural language processing tasks.However,their application to NER remains underexplored.This paper investigates leveraging the GPT-3 PLM for NER without fine-tuning.We propose a novel scheme that utilizes carefully crafted templates and context examples selected based on semantic similarity.Our experimental results demonstrate the feasibility of this approach,suggesting a promising direction for harnessing PLMs in NER.展开更多
Class-Incremental Few-Shot Named Entity Recognition(CIFNER)aims to identify entity categories that have appeared with only a few newly added(novel)class examples.However,existing class-incremental methods typically in...Class-Incremental Few-Shot Named Entity Recognition(CIFNER)aims to identify entity categories that have appeared with only a few newly added(novel)class examples.However,existing class-incremental methods typically introduce new parameters to adapt to new classes and treat all information equally,resulting in poor generalization.Meanwhile,few-shot methods necessitate samples for all observed classes,making them difficult to transfer into a class-incremental setting.Thus,a decoupled two-phase framework method for the CIFNER task is proposed to address the above issues.The whole task is converted to two separate tasks named Entity Span Detection(ESD)and Entity Class Discrimination(ECD)that leverage parameter-cloning and label-fusion to learn different levels of knowledge separately,such as class-generic knowledge and class-specific knowledge.Moreover,different variants,such as the Conditional Random Field-based(CRF-based),word-pair-based methods in ESD module,and add-based,Natural Language Inference-based(NLI-based)and prompt-based methods in ECD module,are investigated to demonstrate the generalizability of the decoupled framework.Extensive experiments on the three Named Entity Recognition(NER)datasets reveal that our method achieves the state-of-the-art performance in the CIFNER setting.展开更多
Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks.Recently,few-shot models have been used for Named Entity Recognition(NER).Prototypical network shows high efficie...Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks.Recently,few-shot models have been used for Named Entity Recognition(NER).Prototypical network shows high efficiency on few-shot NER.However,existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities.We present a novel model,Few-shot Named Entity Recognition with Joint Token and Sentence Awareness(JTSA),to address the issue.The sentence awareness is introduced to probe the semantic similarity among the sentences.The Token awareness is used to explore the similarity of the tokens.To further improve the robustness and results of the model,we adopt the joint learning scheme on the few-shot NER.Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Fewshot NER datasets.展开更多
Conventional named entity recognition methods usually assume that the model can be trained with sufficient annotated data to obtain good recognition results.However,in Chinese named entity recognition in the electric ...Conventional named entity recognition methods usually assume that the model can be trained with sufficient annotated data to obtain good recognition results.However,in Chinese named entity recognition in the electric power domain,existing methods still face the challenges of lack of annotated data and new entities of unseen types.To address these challenges,this paper proposes a meta-learning-based continuous cue adjustment method.A generative pre-trained language model is used so that it does not change its own model structure when dealing with new entity types.To guide the pre-trained model to make full use of its own latent knowledge,a vector of learnable parameters is set as a cue to compensate for the lack of training data.In order to further improve the model's few-shot learning capability,a meta-learning strategy is used to train the model.Experimental results show that the proposed approach achieves the best results in a few-shot electric Chinese power named entity recognition dataset compared to several traditional named entity approaches.展开更多
The power grid operation process is complex,and many operation process data involve national security,business secrets,and user privacy.Meanwhile,labeled datasets may exist in many different operation platforms,but th...The power grid operation process is complex,and many operation process data involve national security,business secrets,and user privacy.Meanwhile,labeled datasets may exist in many different operation platforms,but they cannot be directly shared since power grid data is highly privacysensitive.How to use these multi-source heterogeneous data as much as possible to build a power grid knowledge map under the premise of protecting privacy security has become an urgent problem in developing smart grid.Therefore,this paper proposes federated learning named entity recognition method for the power grid field,aiming to solve the problem of building a named entity recognition model covering the entire power grid process training by data with different security requirements.We decompose the named entity recognition(NER)model FLAT(Chinese NER Using Flat-Lattice Transformer)in each platform into a global part and a local part.The local part is used to capture the characteristics of the local data in each platform and is updated using locally labeled data.The global part is learned across different operation platforms to capture the shared NER knowledge.Its local gradients fromdifferent platforms are aggregated to update the global model,which is further delivered to each platform to update their global part.Experiments on two publicly available Chinese datasets and one power grid dataset validate the effectiveness of our method.展开更多
In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in ...In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection.展开更多
With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so ...With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so this reality drives the conversion of paper medical records to electronic medical records.Electronic medical records are the basis for establishing a smart hospital and an important guarantee for achieving medical intelligence,and the massive amount of electronic medical record data is also an important data set for conducting research in the medical field.However,electronic medical records contain a large amount of private patient information,which must be desensitized before they are used as open resources.Therefore,to solve the above problems,data masking for Chinese electronic medical records with named entity recognition is proposed in this paper.Firstly,the text is vectorized to satisfy the required format of the model input.Secondly,since the input sentences may have a long or short length and the relationship between sentences in context is not negligible.To this end,a neural network model for named entity recognition based on bidirectional long short-term memory(BiLSTM)with conditional random fields(CRF)is constructed.Finally,the data masking operation is performed based on the named entity recog-nition results,mainly using regular expression filtering encryption and principal component analysis(PCA)word vector compression and replacement.In addi-tion,comparison experiments with the hidden markov model(HMM)model,LSTM-CRF model,and BiLSTM model are conducted in this paper.The experi-mental results show that the method used in this paper achieves 92.72%Accuracy,92.30%Recall,and 92.51%F1_score,which has higher accuracy compared with other models.展开更多
An obviously challenging problem in named entity recognition is the construction of the kind data set of entities.Although some research has been conducted on entity database construction,the majority of them are dire...An obviously challenging problem in named entity recognition is the construction of the kind data set of entities.Although some research has been conducted on entity database construction,the majority of them are directed at Wikipedia or the minority at structured entities such as people,locations and organizational nouns in the news.This paper focuses on the identification of scientific entities in carbonate platforms in English literature,using the example of carbonate platforms in sedimentology.Firstly,based on the fact that the reasons for writing literature in key disciplines are likely to be provided by multidisciplinary experts,this paper designs a literature content extraction method that allows dealing with complex text structures.Secondly,based on the literature extraction content,we formalize the entity extraction task(lexicon and lexical-based entity extraction)for entity extraction.Furthermore,for testing the accuracy of entity extraction,three currently popular recognition methods are chosen to perform entity detection in this paper.Experiments show that the entity data set provided by the lexicon and lexical-based entity extraction method is of significant assistance for the named entity recognition task.This study presents a pilot study of entity extraction,which involves the use of a complex structure and specialized literature on carbonate platforms in English.展开更多
Computational linguistics is an engineering-based scientific discipline.It deals with understanding written and spoken language from a computational viewpoint.Further,the domain also helps construct the artefacts that...Computational linguistics is an engineering-based scientific discipline.It deals with understanding written and spoken language from a computational viewpoint.Further,the domain also helps construct the artefacts that are useful in processing and producing a language either in bulk or in a dialogue setting.Named Entity Recognition(NER)is a fundamental task in the data extraction process.It concentrates on identifying and labelling the atomic components from several texts grouped under different entities,such as organizations,people,places,and times.Further,the NER mechanism identifies and removes more types of entities as per the requirements.The significance of the NER mechanism has been well-established in Natural Language Processing(NLP)tasks,and various research investigations have been conducted to develop novel NER methods.The conventional ways of managing the tasks range from rule-related and hand-crafted feature-related Machine Learning(ML)techniques to Deep Learning(DL)techniques.In this aspect,the current study introduces a novel Dart Games Optimizer with Hybrid Deep Learning-Driven Computational Linguistics(DGOHDL-CL)model for NER.The presented DGOHDL-CL technique aims to determine and label the atomic components from several texts as a collection of the named entities.In the presented DGOHDL-CL technique,the word embed-ding process is executed at the initial stage with the help of the word2vec model.For the NER mechanism,the Convolutional Gated Recurrent Unit(CGRU)model is employed in this work.At last,the DGO technique is used as a hyperparameter tuning strategy for the CGRU algorithm to boost the NER’s outcomes.No earlier studies integrated the DGO mechanism with the CGRU model for NER.To exhibit the superiority of the proposed DGOHDL-CL technique,a widespread simulation analysis was executed on two datasets,CoNLL-2003 and OntoNotes 5.0.The experimental outcomes establish the promising performance of the DGOHDL-CL technique over other models.展开更多
Named Entity Recognition(NER)is one of the fundamental tasks in Natural Language Processing(NLP),which aims to locate,extract,and classify named entities into a predefined category such as person,organization and loca...Named Entity Recognition(NER)is one of the fundamental tasks in Natural Language Processing(NLP),which aims to locate,extract,and classify named entities into a predefined category such as person,organization and location.Most of the earlier research for identifying named entities relied on using handcrafted features and very large knowledge resources,which is time consuming and not adequate for resource-scarce languages such as Arabic.Recently,deep learning achieved state-of-the-art performance on many NLP tasks including NER without requiring hand-crafted features.In addition,transfer learning has also proven its efficiency in several NLP tasks by exploiting pretrained language models that are used to transfer knowledge learned from large-scale datasets to domain-specific tasks.Bidirectional Encoder Representation from Transformer(BERT)is a contextual language model that generates the semantic vectors dynamically according to the context of the words.BERT architecture relay on multi-head attention that allows it to capture global dependencies between words.In this paper,we propose a deep learning-based model by fine-tuning BERT model to recognize and classify Arabic named entities.The pre-trained BERT context embeddings were used as input features to a Bidirectional Gated Recurrent Unit(BGRU)and were fine-tuned using two annotated Arabic Named Entity Recognition(ANER)datasets.Experimental results demonstrate that the proposed model outperformed state-of-the-art ANER models achieving 92.28%and 90.68%F-measure values on the ANERCorp dataset and the merged ANERCorp and AQMAR dataset,respectively.展开更多
Owing to the continuous barrage of cyber threats,there is a massive amount of cyber threat intelligence.However,a great deal of cyber threat intelligence come from textual sources.For analysis of cyber threat intellig...Owing to the continuous barrage of cyber threats,there is a massive amount of cyber threat intelligence.However,a great deal of cyber threat intelligence come from textual sources.For analysis of cyber threat intelligence,many security analysts rely on cumbersome and time-consuming manual efforts.Cybersecurity knowledge graph plays a significant role in automatics analysis of cyber threat intelligence.As the foundation for constructing cybersecurity knowledge graph,named entity recognition(NER)is required for identifying critical threat-related elements from textual cyber threat intelligence.Recently,deep neural network-based models have attained very good results in NER.However,the performance of these models relies heavily on the amount of labeled data.Since labeled data in cybersecurity is scarce,in this paper,we propose an adversarial active learning framework to effectively select the informative samples for further annotation.In addition,leveraging the long short-term memory(LSTM)network and the bidirectional LSTM(BiLSTM)network,we propose a novel NER model by introducing a dynamic attention mechanism into the BiLSTM-LSTM encoderdecoder.With the selected informative samples annotated,the proposed NER model is retrained.As a result,the performance of the NER model is incrementally enhanced with low labeling cost.Experimental results show the effectiveness of the proposed method.展开更多
Named Entity Recognition aims to identify and to classify rigid designators in text such as proper names, biological species, and temporal expressions into some predefined categories. There has been growing interest i...Named Entity Recognition aims to identify and to classify rigid designators in text such as proper names, biological species, and temporal expressions into some predefined categories. There has been growing interest in this field of research since the early 1990s. Named Entity Recognition has a vital role in different fields of natural language processing such as Machine Translation, Information Extraction, Question Answering System and various other fields. In this paper, Named Entity Recognition for Nepali text, based on the Support Vector Machine (SVM) is presented which is one of machine learning approaches for the classification task. A set of features are extracted from training data set. Accuracy and efficiency of SVM classifier are analyzed in three different sizes of training data set. Recognition systems are tested with ten datasets for Nepali text. The strength of this work is the efficient feature extraction and the comprehensive recognition techniques. The Support Vector Machine based Named Entity Recognition is limited to use a certain set of features and it uses a small dictionary which affects its performance. The learning performance of recognition system is observed. It is found that system can learn well from the small set of training data and increase the rate of learning on the increment of training size.展开更多
Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system mak...Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system makes extensive use of a diverse set of features, including local features, full text features and external resource features. All features incorporated in this system are described in detail, and the impacts of different feature sets on the performance of the system are evaluated. In order to improve the performance of system, post-processing modules are exploited to deal with the abbreviation phenomena, cascaded named entity and boundary errors identification. Evaluation on this system proved that the feature selection has important impact on the system performance, and the post-processing explored has an important contribution on system performance to achieve better resuits.展开更多
Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-le...Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-level features is carefully built and becomes a basis for a new Chinese NER method,which is proposed in this paper.This method converts the raw text to a character vector sequence,extracts global text features with a bidirectional long short-term memory and extracts local text features with a soft attention model.A linear chain conditional random field is also used to label all the characters with the help of the global and local text features.Experiments based on the Microsoft Research Asia(MSRA)dataset are designed and implemented.Results show that the proposed method has good performance compared to other methods,which proves that the global and local text features extracted have a positive influence on Chinese NER.For more variety in the test domains,a resume dataset from Sina Finance is also used to prove the effectiveness of the proposed method.展开更多
基金Supported by the Scientific and Technological Innovation 2030-Major Project of New Generation Artificial Intelligence(2020AAA0109300)Science and Technology Commission of Shanghai Municipality(21DZ2203100)2023 Anhui Province Key Research and Development Plan Project-Special Project of Science and Technology Cooperation(2023i11020002)。
文摘The few-shot named entity recognition(NER)task aims to train a robust model in the source domain and transfer it to the target domain with very few annotated data.Currently,some approaches rely on the prototypical network for NER.However,these approaches often overlook the spatial relations in the span boundary matrix because entity words tend to depend more on adjacent words.We propose using a multidimensional convolution module to address this limitation to capture short-distance spatial dependencies.Additionally,we uti-lize an improved prototypical network and assign different weights to different samples that belong to the same class,thereby enhancing the performance of the few-shot NER task.Further experimental analysis demonstrates that our approach has significantly improved over baseline models across multiple datasets.
基金financially supported by the Natural Science Foundation of China(Grant No.42301492)the National Key R&D Program of China(Grant Nos.2022YFF0711600,2022YFF0801201,2022YFF0801200)+3 种基金the Major Special Project of Xinjiang(Grant No.2022A03009-3)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(Grant No.KF-2022-07014)the Opening Fund of the Key Laboratory of the Geological Survey and Evaluation of the Ministry of Education(Grant No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.
基金supported by the Outstanding Youth Team Project of Central Universities(QNTD202308)the Ant Group through CCF-Ant Research Fund(CCF-AFSG 769498 RF20220214).
文摘Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and categorize them into predefined entity types.This process can provide basic support for the automatic construction of knowledge bases.In contrast to general texts,biomedical texts frequently contain numerous nested entities and local dependencies among these entities,presenting significant challenges to prevailing NER models.To address these issues,we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer(RoBGP).Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically generate word-level initial vectors.It then incorporates a Bidirectional Long Short-Term Memory network for capturing bidirectional semantic information,effectively addressing the issue of long-distance dependencies.Furthermore,the Global Pointer model is employed to comprehensively recognize all nested entities in the text.We conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior performance of RoBGP over several baseline models.This research confirms the effectiveness of RoBGP in Chinese biomedical NER,providing reliable technical support for biomedical information extraction and knowledge base construction.
基金This research was supported by the National Key Research and Development Program[2020YFB1006302].
文摘Named entity recognition(NER)is a fundamental task of information extraction(IE),and it has attracted considerable research attention in recent years.The abundant annotated English NER datasets have significantly promoted the NER research in the English field.By contrast,much fewer efforts are made to the Chinese NER research,especially in the scientific domain,due to the scarcity of Chinese NER datasets.To alleviate this problem,we present aChinese scientificNER dataset–SciCN,which contains entity annotations of titles and abstracts derived from 3,500 scientific papers.We manually annotate a total of 62,059 entities,and these entities are classified into six types.Compared to English scientific NER datasets,SciCN has a larger scale and is more diverse,for it not only contains more paper abstracts but these abstracts are derived from more research fields.To investigate the properties of SciCN and provide baselines for future research,we adapt a number of previous state-of-theart Chinese NER models to evaluate SciCN.Experimental results show that SciCN is more challenging than other Chinese NER datasets.In addition,previous studies have proven the effectiveness of using lexicons to enhance Chinese NER models.Motivated by this fact,we provide a scientific domain-specific lexicon.Validation results demonstrate that our lexicon delivers better performance gains than lexicons of other domains.We hope that the SciCN dataset and the lexicon will enable us to benchmark the NER task regarding the Chinese scientific domain and make progress for future research.The dataset and lexicon are available at:https://github.com/yangjingla/SciCN.git.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
基金supported by the National Key Research and Development Project(2021YFF0901701)。
文摘Few-shot named entity recognition(NER)aims to identify named entities in new domains using a limited amount of annotated data.Previous methods divided this task into entity span detection and entity classification,achieving good results.However these methods are limited by the imbalance between the entity and non-entity categories due to the use of sequence labeling for entity span detection.To this end,a point-proto network(PPN)combining pointer and prototypical networks was proposed.Specifically,the pointer network generates the position of entities in sentences in the entity span detection stage.The prototypical network builds semantic prototypes of entity types and classifies entities based on their distance from these prototypes in the entity classification stage.Moreover,the low-rank adaptation(LoRA)fine-tuning method,which involves freezing the pre-trained weights and injecting a trainable decomposition matrix,reduces the parameters that need to be trained and saved.Extensive experiments on the few-shot NER Dataset(Few-NERD)and Cross-Dataset demonstrate the superiority of PPN in this domain.
文摘Named Entity Recognition(NER)is crucial for extracting structured information from text.While traditional methods rely on rules,Conditional Random Fields(CRFs),or deep learning,the advent of large-scale Pre-trained Language Models(PLMs)offers new possibilities.PLMs excel at contextual learning,potentially simplifying many natural language processing tasks.However,their application to NER remains underexplored.This paper investigates leveraging the GPT-3 PLM for NER without fine-tuning.We propose a novel scheme that utilizes carefully crafted templates and context examples selected based on semantic similarity.Our experimental results demonstrate the feasibility of this approach,suggesting a promising direction for harnessing PLMs in NER.
基金supported by the National Natural Science Foundation of China(No.62006243)。
文摘Class-Incremental Few-Shot Named Entity Recognition(CIFNER)aims to identify entity categories that have appeared with only a few newly added(novel)class examples.However,existing class-incremental methods typically introduce new parameters to adapt to new classes and treat all information equally,resulting in poor generalization.Meanwhile,few-shot methods necessitate samples for all observed classes,making them difficult to transfer into a class-incremental setting.Thus,a decoupled two-phase framework method for the CIFNER task is proposed to address the above issues.The whole task is converted to two separate tasks named Entity Span Detection(ESD)and Entity Class Discrimination(ECD)that leverage parameter-cloning and label-fusion to learn different levels of knowledge separately,such as class-generic knowledge and class-specific knowledge.Moreover,different variants,such as the Conditional Random Field-based(CRF-based),word-pair-based methods in ESD module,and add-based,Natural Language Inference-based(NLI-based)and prompt-based methods in ECD module,are investigated to demonstrate the generalizability of the decoupled framework.Extensive experiments on the three Named Entity Recognition(NER)datasets reveal that our method achieves the state-of-the-art performance in the CIFNER setting.
基金The State Key Program of National Natural Science of China,Grant/Award Number:61533018National Natural Science Foundation of China,Grant/Award Number:61402220+2 种基金The Philosophy and Social Science Foundation of Hunan Province,Grant/Award Number:16YBA323Natural Science Foundation of Hunan Province,Grant/Award Number:2020J4525,2022JJ30495Scientific Research Fund of Hunan Provincial Education Department,Grant/Award Number:18B279,19A439,22A0316.
文摘Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks.Recently,few-shot models have been used for Named Entity Recognition(NER).Prototypical network shows high efficiency on few-shot NER.However,existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities.We present a novel model,Few-shot Named Entity Recognition with Joint Token and Sentence Awareness(JTSA),to address the issue.The sentence awareness is introduced to probe the semantic similarity among the sentences.The Token awareness is used to explore the similarity of the tokens.To further improve the robustness and results of the model,we adopt the joint learning scheme on the few-shot NER.Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Fewshot NER datasets.
文摘Conventional named entity recognition methods usually assume that the model can be trained with sufficient annotated data to obtain good recognition results.However,in Chinese named entity recognition in the electric power domain,existing methods still face the challenges of lack of annotated data and new entities of unseen types.To address these challenges,this paper proposes a meta-learning-based continuous cue adjustment method.A generative pre-trained language model is used so that it does not change its own model structure when dealing with new entity types.To guide the pre-trained model to make full use of its own latent knowledge,a vector of learnable parameters is set as a cue to compensate for the lack of training data.In order to further improve the model's few-shot learning capability,a meta-learning strategy is used to train the model.Experimental results show that the proposed approach achieves the best results in a few-shot electric Chinese power named entity recognition dataset compared to several traditional named entity approaches.
基金Thisworkwas supported by State Grid Science and TechnologyResearch Program(SGSCJY00NYJS2200026).
文摘The power grid operation process is complex,and many operation process data involve national security,business secrets,and user privacy.Meanwhile,labeled datasets may exist in many different operation platforms,but they cannot be directly shared since power grid data is highly privacysensitive.How to use these multi-source heterogeneous data as much as possible to build a power grid knowledge map under the premise of protecting privacy security has become an urgent problem in developing smart grid.Therefore,this paper proposes federated learning named entity recognition method for the power grid field,aiming to solve the problem of building a named entity recognition model covering the entire power grid process training by data with different security requirements.We decompose the named entity recognition(NER)model FLAT(Chinese NER Using Flat-Lattice Transformer)in each platform into a global part and a local part.The local part is used to capture the characteristics of the local data in each platform and is updated using locally labeled data.The global part is learned across different operation platforms to capture the shared NER knowledge.Its local gradients fromdifferent platforms are aggregated to update the global model,which is further delivered to each platform to update their global part.Experiments on two publicly available Chinese datasets and one power grid dataset validate the effectiveness of our method.
基金funded by the Double Top-Class Innovation Research Project in Cyberspace Security Enforcement Technology of People’s Public Security University of China(No.2023SYL07).
文摘In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection.
基金This research was supported by the National Natural Science Foundation of China under Grant(No.42050102)the Postgraduate Education Reform Project of Jiangsu Province under Grant(No.SJCX22_0343)Also,this research was supported by Dou Wanchun Expert Workstation of Yunnan Province(No.202205AF150013).
文摘With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so this reality drives the conversion of paper medical records to electronic medical records.Electronic medical records are the basis for establishing a smart hospital and an important guarantee for achieving medical intelligence,and the massive amount of electronic medical record data is also an important data set for conducting research in the medical field.However,electronic medical records contain a large amount of private patient information,which must be desensitized before they are used as open resources.Therefore,to solve the above problems,data masking for Chinese electronic medical records with named entity recognition is proposed in this paper.Firstly,the text is vectorized to satisfy the required format of the model input.Secondly,since the input sentences may have a long or short length and the relationship between sentences in context is not negligible.To this end,a neural network model for named entity recognition based on bidirectional long short-term memory(BiLSTM)with conditional random fields(CRF)is constructed.Finally,the data masking operation is performed based on the named entity recog-nition results,mainly using regular expression filtering encryption and principal component analysis(PCA)word vector compression and replacement.In addi-tion,comparison experiments with the hidden markov model(HMM)model,LSTM-CRF model,and BiLSTM model are conducted in this paper.The experi-mental results show that the method used in this paper achieves 92.72%Accuracy,92.30%Recall,and 92.51%F1_score,which has higher accuracy compared with other models.
基金supported by the National Natural Science Foundation of China under Grant No.42050102the National Science Foundation of China(Grant No.62001236)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJA520003).
文摘An obviously challenging problem in named entity recognition is the construction of the kind data set of entities.Although some research has been conducted on entity database construction,the majority of them are directed at Wikipedia or the minority at structured entities such as people,locations and organizational nouns in the news.This paper focuses on the identification of scientific entities in carbonate platforms in English literature,using the example of carbonate platforms in sedimentology.Firstly,based on the fact that the reasons for writing literature in key disciplines are likely to be provided by multidisciplinary experts,this paper designs a literature content extraction method that allows dealing with complex text structures.Secondly,based on the literature extraction content,we formalize the entity extraction task(lexicon and lexical-based entity extraction)for entity extraction.Furthermore,for testing the accuracy of entity extraction,three currently popular recognition methods are chosen to perform entity detection in this paper.Experiments show that the entity data set provided by the lexicon and lexical-based entity extraction method is of significant assistance for the named entity recognition task.This study presents a pilot study of entity extraction,which involves the use of a complex structure and specialized literature on carbonate platforms in English.
基金Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R281)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4331004DSR10).
文摘Computational linguistics is an engineering-based scientific discipline.It deals with understanding written and spoken language from a computational viewpoint.Further,the domain also helps construct the artefacts that are useful in processing and producing a language either in bulk or in a dialogue setting.Named Entity Recognition(NER)is a fundamental task in the data extraction process.It concentrates on identifying and labelling the atomic components from several texts grouped under different entities,such as organizations,people,places,and times.Further,the NER mechanism identifies and removes more types of entities as per the requirements.The significance of the NER mechanism has been well-established in Natural Language Processing(NLP)tasks,and various research investigations have been conducted to develop novel NER methods.The conventional ways of managing the tasks range from rule-related and hand-crafted feature-related Machine Learning(ML)techniques to Deep Learning(DL)techniques.In this aspect,the current study introduces a novel Dart Games Optimizer with Hybrid Deep Learning-Driven Computational Linguistics(DGOHDL-CL)model for NER.The presented DGOHDL-CL technique aims to determine and label the atomic components from several texts as a collection of the named entities.In the presented DGOHDL-CL technique,the word embed-ding process is executed at the initial stage with the help of the word2vec model.For the NER mechanism,the Convolutional Gated Recurrent Unit(CGRU)model is employed in this work.At last,the DGO technique is used as a hyperparameter tuning strategy for the CGRU algorithm to boost the NER’s outcomes.No earlier studies integrated the DGO mechanism with the CGRU model for NER.To exhibit the superiority of the proposed DGOHDL-CL technique,a widespread simulation analysis was executed on two datasets,CoNLL-2003 and OntoNotes 5.0.The experimental outcomes establish the promising performance of the DGOHDL-CL technique over other models.
基金funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University through the Graduate Students Research Support Program.
文摘Named Entity Recognition(NER)is one of the fundamental tasks in Natural Language Processing(NLP),which aims to locate,extract,and classify named entities into a predefined category such as person,organization and location.Most of the earlier research for identifying named entities relied on using handcrafted features and very large knowledge resources,which is time consuming and not adequate for resource-scarce languages such as Arabic.Recently,deep learning achieved state-of-the-art performance on many NLP tasks including NER without requiring hand-crafted features.In addition,transfer learning has also proven its efficiency in several NLP tasks by exploiting pretrained language models that are used to transfer knowledge learned from large-scale datasets to domain-specific tasks.Bidirectional Encoder Representation from Transformer(BERT)is a contextual language model that generates the semantic vectors dynamically according to the context of the words.BERT architecture relay on multi-head attention that allows it to capture global dependencies between words.In this paper,we propose a deep learning-based model by fine-tuning BERT model to recognize and classify Arabic named entities.The pre-trained BERT context embeddings were used as input features to a Bidirectional Gated Recurrent Unit(BGRU)and were fine-tuned using two annotated Arabic Named Entity Recognition(ANER)datasets.Experimental results demonstrate that the proposed model outperformed state-of-the-art ANER models achieving 92.28%and 90.68%F-measure values on the ANERCorp dataset and the merged ANERCorp and AQMAR dataset,respectively.
基金the National Natural Science Foundation of China undergrant 61501515.
文摘Owing to the continuous barrage of cyber threats,there is a massive amount of cyber threat intelligence.However,a great deal of cyber threat intelligence come from textual sources.For analysis of cyber threat intelligence,many security analysts rely on cumbersome and time-consuming manual efforts.Cybersecurity knowledge graph plays a significant role in automatics analysis of cyber threat intelligence.As the foundation for constructing cybersecurity knowledge graph,named entity recognition(NER)is required for identifying critical threat-related elements from textual cyber threat intelligence.Recently,deep neural network-based models have attained very good results in NER.However,the performance of these models relies heavily on the amount of labeled data.Since labeled data in cybersecurity is scarce,in this paper,we propose an adversarial active learning framework to effectively select the informative samples for further annotation.In addition,leveraging the long short-term memory(LSTM)network and the bidirectional LSTM(BiLSTM)network,we propose a novel NER model by introducing a dynamic attention mechanism into the BiLSTM-LSTM encoderdecoder.With the selected informative samples annotated,the proposed NER model is retrained.As a result,the performance of the NER model is incrementally enhanced with low labeling cost.Experimental results show the effectiveness of the proposed method.
文摘Named Entity Recognition aims to identify and to classify rigid designators in text such as proper names, biological species, and temporal expressions into some predefined categories. There has been growing interest in this field of research since the early 1990s. Named Entity Recognition has a vital role in different fields of natural language processing such as Machine Translation, Information Extraction, Question Answering System and various other fields. In this paper, Named Entity Recognition for Nepali text, based on the Support Vector Machine (SVM) is presented which is one of machine learning approaches for the classification task. A set of features are extracted from training data set. Accuracy and efficiency of SVM classifier are analyzed in three different sizes of training data set. Recognition systems are tested with ten datasets for Nepali text. The strength of this work is the efficient feature extraction and the comprehensive recognition techniques. The Support Vector Machine based Named Entity Recognition is limited to use a certain set of features and it uses a small dictionary which affects its performance. The learning performance of recognition system is observed. It is found that system can learn well from the small set of training data and increase the rate of learning on the increment of training size.
基金Supported by The National Natural Science Foundation of China(No.60302021).
文摘Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system makes extensive use of a diverse set of features, including local features, full text features and external resource features. All features incorporated in this system are described in detail, and the impacts of different feature sets on the performance of the system are evaluated. In order to improve the performance of system, post-processing modules are exploited to deal with the abbreviation phenomena, cascaded named entity and boundary errors identification. Evaluation on this system proved that the feature selection has important impact on the system performance, and the post-processing explored has an important contribution on system performance to achieve better resuits.
基金Supported by 242 National Information Security Projects(2017A149)。
文摘Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-level features is carefully built and becomes a basis for a new Chinese NER method,which is proposed in this paper.This method converts the raw text to a character vector sequence,extracts global text features with a bidirectional long short-term memory and extracts local text features with a soft attention model.A linear chain conditional random field is also used to label all the characters with the help of the global and local text features.Experiments based on the Microsoft Research Asia(MSRA)dataset are designed and implemented.Results show that the proposed method has good performance compared to other methods,which proves that the global and local text features extracted have a positive influence on Chinese NER.For more variety in the test domains,a resume dataset from Sina Finance is also used to prove the effectiveness of the proposed method.