presented an application of using 3 D printing technique for the design and fabrication of a novel fiber Bragg grating( FBG)based sensing platform for foot planar pressure measurement.Pressure sensing unit was fabrica...presented an application of using 3 D printing technique for the design and fabrication of a novel fiber Bragg grating( FBG)based sensing platform for foot planar pressure measurement.Pressure sensing unit was fabricated using 3 D printing technique by layering of extruded polylactic acid( PLA) material and mounting FBG sensor at the center of each sensing unit for pressure measurement. Performance of the sensing system was validated by applying load step by step as well as cyclic load on FBG pressure sensors. A simulation study was carried out using the sensing platform to assess foot plantar pressure distribution arises from weight gaining and losing processes of pregnant woman. The monitored four different foot positions such as first metatarsus,second metatarsus,mid-foot and heel exhibited obvious differences during testing process. Foot plantar pressure of heel was 1. 7 times of the pressure occurred at the first and second metatarsus( fore-foot),while there was limited pressure occurred at the mid-foot position during weight gaining process of a female subject. The occurred pressures at the two metatarsus areas were around 90%( pressure ratio) of heel and decreased continuously as the increase of subject weight,but weight losing process had very limited influence on this pressure ratio. Center of gravity of pregnant woman was found to shift backward substantially during the weighting gaining process,leading to a significant rise of the heel pressure. Hence, the protection of the heel position for female is highly important during both pregnancy and after baby delivery.展开更多
A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBCs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the...A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBCs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3 × 3 coupler is used as a splitter. By combining with software demodulation, the outer interference can be obtained from the outputs of the interferometer. This kind of interferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.展开更多
An all-fiber based Er~ 3+ ∶Yb~ 3+ co-doped double clad fiber laser operating at 1550nm is demonstrated. By using 9m long Er~ 3+ ∶Yb~ 3+ co-doped fiber(EYDF) as the gain medium, and using a pair of fiber Bragg gratin...An all-fiber based Er~ 3+ ∶Yb~ 3+ co-doped double clad fiber laser operating at 1550nm is demonstrated. By using 9m long Er~ 3+ ∶Yb~ 3+ co-doped fiber(EYDF) as the gain medium, and using a pair of fiber Bragg gratings as wavelength filters, the line-width of the output laser is as narrow as 0.2nm and the output power is more than 6mW. The fluorescent effect of the laser before its emission is also studied. And it is found that the Er~ 3+ ∶Yb~ 3+ co-doped double-clad fiber laser also exhibits a high gain for Yb~ 3+ transition near 1080nm.展开更多
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal ...A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz - 1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.展开更多
A new and easy-to-fabricate strain sensor has been developed,based on fiber Bragg grating(FBG)technology embedded into a thermoplastic polyurethane filament using a 3-dimensional(3D)printer.Taking advantage of the fle...A new and easy-to-fabricate strain sensor has been developed,based on fiber Bragg grating(FBG)technology embedded into a thermoplastic polyurethane filament using a 3-dimensional(3D)printer.Taking advantage of the flexibility and elastic properties of the thermoplastic polyurethane material,the embedding of the FBG provides durable protection with enhanced flexibility and sensitivity,as compared to the use of a bare FBG.Results of an evaluation of its performance have shown that the FBG sensors embedded in this way can be applied effectively in the measurement of strain,with an average wavelength responsivity of 0.0135 nm/cm of displacement for tensile strain and -0.0142 nm/cm for compressive strain,both showing a linearity value of up to 99%.Furthermore,such an embedded FBG-based strain sensor has a sensitivity of~1.74 times greater than that of a bare FBG used for strain measurement and is well protected and suitable for in-the-field use.It is also observed that the thermoplastic polyurethane based(TPU-based)FBG strain sensor carries a sensitivity value of~2.05 times higher than that of the polylactic acid based(PLA-based)FBG strain sensor proving that TPU material can be made as the material of choice as a“sensing”pad for the FBG.展开更多
基金Fundamental Research Funds for the Central Universities,China(No.17D110116)Henan Key Laboratory of Textile Materials,ChinaNational Natural Science Foundation of China(No.41602352)
文摘presented an application of using 3 D printing technique for the design and fabrication of a novel fiber Bragg grating( FBG)based sensing platform for foot planar pressure measurement.Pressure sensing unit was fabricated using 3 D printing technique by layering of extruded polylactic acid( PLA) material and mounting FBG sensor at the center of each sensing unit for pressure measurement. Performance of the sensing system was validated by applying load step by step as well as cyclic load on FBG pressure sensors. A simulation study was carried out using the sensing platform to assess foot plantar pressure distribution arises from weight gaining and losing processes of pregnant woman. The monitored four different foot positions such as first metatarsus,second metatarsus,mid-foot and heel exhibited obvious differences during testing process. Foot plantar pressure of heel was 1. 7 times of the pressure occurred at the first and second metatarsus( fore-foot),while there was limited pressure occurred at the mid-foot position during weight gaining process of a female subject. The occurred pressures at the two metatarsus areas were around 90%( pressure ratio) of heel and decreased continuously as the increase of subject weight,but weight losing process had very limited influence on this pressure ratio. Center of gravity of pregnant woman was found to shift backward substantially during the weighting gaining process,leading to a significant rise of the heel pressure. Hence, the protection of the heel position for female is highly important during both pregnancy and after baby delivery.
基金the National Natural Science Foundation of China (60277015) and the National"863"Program Project (2004AA616020)
文摘A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBCs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3 × 3 coupler is used as a splitter. By combining with software demodulation, the outer interference can be obtained from the outputs of the interferometer. This kind of interferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.
文摘An all-fiber based Er~ 3+ ∶Yb~ 3+ co-doped double clad fiber laser operating at 1550nm is demonstrated. By using 9m long Er~ 3+ ∶Yb~ 3+ co-doped fiber(EYDF) as the gain medium, and using a pair of fiber Bragg gratings as wavelength filters, the line-width of the output laser is as narrow as 0.2nm and the output power is more than 6mW. The fluorescent effect of the laser before its emission is also studied. And it is found that the Er~ 3+ ∶Yb~ 3+ co-doped double-clad fiber laser also exhibits a high gain for Yb~ 3+ transition near 1080nm.
基金This work is supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61290311).
文摘A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz - 1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
基金financially supported by a Newton Fund Impact Scheme under the Newton-Ungku Omar Fund Partnership(Grant No.IF022-2020)funded by the UK Department for Business,Energy and Industrial Strategy and Malaysian Industry-Government Group for High Technology(MIGHT)and delivered by the British Council and MIGHT+1 种基金the support from University of Malaya(Grant Nos.RK021-2019 and TOP100PRC)the support from the Royal Academy of Engineering.
文摘A new and easy-to-fabricate strain sensor has been developed,based on fiber Bragg grating(FBG)technology embedded into a thermoplastic polyurethane filament using a 3-dimensional(3D)printer.Taking advantage of the flexibility and elastic properties of the thermoplastic polyurethane material,the embedding of the FBG provides durable protection with enhanced flexibility and sensitivity,as compared to the use of a bare FBG.Results of an evaluation of its performance have shown that the FBG sensors embedded in this way can be applied effectively in the measurement of strain,with an average wavelength responsivity of 0.0135 nm/cm of displacement for tensile strain and -0.0142 nm/cm for compressive strain,both showing a linearity value of up to 99%.Furthermore,such an embedded FBG-based strain sensor has a sensitivity of~1.74 times greater than that of a bare FBG used for strain measurement and is well protected and suitable for in-the-field use.It is also observed that the thermoplastic polyurethane based(TPU-based)FBG strain sensor carries a sensitivity value of~2.05 times higher than that of the polylactic acid based(PLA-based)FBG strain sensor proving that TPU material can be made as the material of choice as a“sensing”pad for the FBG.