A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity ...A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.展开更多
A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
In this work,we theoretically unlock the potential of Ho^(3+)-doped InF3 fiber for efficient~3.2μm laser generation(from the ^(5)F_(4),^(5)S_(2)→^(5)F_(5) transition),by employing a novel dual-wavelength pumping sch...In this work,we theoretically unlock the potential of Ho^(3+)-doped InF3 fiber for efficient~3.2μm laser generation(from the ^(5)F_(4),^(5)S_(2)→^(5)F_(5) transition),by employing a novel dual-wavelength pumping scheme at 1150 nm and 980 nm,for the first time.Under clad-coupled 1150 nm pumping of 5 W,~3.2μm power of 3.6 W has been predicted with the optical-to-optical efficiency of 14.4%.Further efficient power scaling,however,is blocked by the output saturation with 980 nm pumping.To alleviate this behavior,the cascaded ^(5)I_(5)→^(5)I_(6) transition,targeting~3.9μm,has been activated simultaneously,therefore accelerating the population circulation between the laser upper level ^(5)F_(4),^(5)S_(2) and long-lived ^(5)I_(6) level under 980 nm pumping.As a result,enhanced~3.2μm power of 4.68 W has been obtained with optical-to-optical efficiency of 15.6%.Meanwhile the~3.9μm laser,yielding power of 2.76 W with optical-to-optical efficiency of 9.2%,is theoretically achievable as well with a moderate heat load,of which the performance is even better than the prior experimentally and theoretically reported Ho^(3+)-doped InF3 fiber lasers emitting at~3.9μm alone.This work demonstrates a versatile platform for laser generation at~3.2μm and~3.9μm,thus providing the new opportunities for many potential applications,e.g.,polymer processing,infrared countermeasures,and free-space communications.展开更多
We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a reg...We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on.展开更多
After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, wi...After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.展开更多
In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding par...In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding parameters such as laser power, welding speed and defocusing value on both kinds of porosities were systemically analyzed respectively, and the shape and fluctuation of plume of the keyhole were observed to reflect the stability of the keyhole. The results show that increasing laser power or decreasing laser spot size can lead to the rising of both number and occupied area of pores in the weld; meanwhile, the plume fluctuates violently over the keyhole, which is always companied with the intense metallic vapor, liquid metal spatter and collapsing in the keyhole, thus more pores are generated in the weld. The porosity in the weld reaches the minimum at welding velocity of 2.0 m/min when laser power is 5 kW and defocusing value is 0.展开更多
Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by ...Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.展开更多
In this paper, we report that a diode-pumped thulium-doped double clad silica fiber laser can provide powers of up to 227 W at 1908 nm, corresponding to a slope efficiency of 54.3%, and an optical-to-optical efficienc...In this paper, we report that a diode-pumped thulium-doped double clad silica fiber laser can provide powers of up to 227 W at 1908 nm, corresponding to a slope efficiency of 54.3%, and an optical-to-optical efficiency of 51.2%. The output power, to the best of our knowledge, is the highest output at 1908 nm. The beam quality M2 factor is about 1.56. Also discussed in this paper is the dependence of the laser performance on fiber length.展开更多
A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100...A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.展开更多
Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microf...Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.展开更多
We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin f...We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.展开更多
We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating...We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.展开更多
By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
We experimentally demonstrated a stable multi-wavelength bright-dark pulse pair in a mode-locked thulium-doped fiber laser(TDFL).The nonlinear polarization rotation(NPR)and nonlinear optical loop mirror(NOLM)were empl...We experimentally demonstrated a stable multi-wavelength bright-dark pulse pair in a mode-locked thulium-doped fiber laser(TDFL).The nonlinear polarization rotation(NPR)and nonlinear optical loop mirror(NOLM)were employed in a figure-eight cavity to allow for multi-wavelength mode-locking operation.By incorporating different lengths of high birefringence polarization-maintaining fiber(PMF),the fiber laser could operate stably in a multi-wavelength emission state.Compared with the absence of the PMF,the birefringence effect caused by PMF resulted in rich multi-wavelength optical spectra and better intensity symmetry and stability of the bright-dark pulse pair.展开更多
Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D ma...Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.展开更多
Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepare...Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.展开更多
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro...We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.展开更多
In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction effi...In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis.展开更多
A new method to achieve 2-μm pulsed fiber lasers based on a supercontinuum (SC) is demonstrated. The incident pump light is a pulsed SC which contains a pump light and a signal light at the same time. The initial s...A new method to achieve 2-μm pulsed fiber lasers based on a supercontinuum (SC) is demonstrated. The incident pump light is a pulsed SC which contains a pump light and a signal light at the same time. The initial signal of the seed laser is provided by the incident pump light and amplified in the cavity. Based on this, we obtain a 2-μm pulsed laser with pulse repetition rate of 50 kHz and pulse width of 2 ns from the Tm-doped fiber laser. This 2-μm pulsed laser is amplified by two stages of fiber amplifiers, then the amplified laser is used for mid-infrared (mid-IR) SC generation in a 10-m length of ZrF4-BaF2-LaF3-AIF3-NaF (ZBLAN) fiber. An all-fiber-integrated mid-IR SC with spectrum ranging from 1.8 ~tm to 4.3 μm is achieved. The maximal average output power of the mid-IR SC from the ZBLAN fiber is 1.24 W (average output power beyond 2.5 μm is 340 mW), corresponding to an output efficiency of 6.6% with respect to the 790-nm pump power.展开更多
基金Poject supported by the National Natural Science Foundation of China(Grant Nos.62175116 and 62311530343)the Postgraduate Research Innovation Program of Jiangsu Province,China(Grant No.KYCX22_0913)。
文摘A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
基金supported in parts by the National Natural Science Foundation of China under Grants No.62005040 and No.U20A20210.
文摘In this work,we theoretically unlock the potential of Ho^(3+)-doped InF3 fiber for efficient~3.2μm laser generation(from the ^(5)F_(4),^(5)S_(2)→^(5)F_(5) transition),by employing a novel dual-wavelength pumping scheme at 1150 nm and 980 nm,for the first time.Under clad-coupled 1150 nm pumping of 5 W,~3.2μm power of 3.6 W has been predicted with the optical-to-optical efficiency of 14.4%.Further efficient power scaling,however,is blocked by the output saturation with 980 nm pumping.To alleviate this behavior,the cascaded ^(5)I_(5)→^(5)I_(6) transition,targeting~3.9μm,has been activated simultaneously,therefore accelerating the population circulation between the laser upper level ^(5)F_(4),^(5)S_(2) and long-lived ^(5)I_(6) level under 980 nm pumping.As a result,enhanced~3.2μm power of 4.68 W has been obtained with optical-to-optical efficiency of 15.6%.Meanwhile the~3.9μm laser,yielding power of 2.76 W with optical-to-optical efficiency of 9.2%,is theoretically achievable as well with a moderate heat load,of which the performance is even better than the prior experimentally and theoretically reported Ho^(3+)-doped InF3 fiber lasers emitting at~3.9μm alone.This work demonstrates a versatile platform for laser generation at~3.2μm and~3.9μm,thus providing the new opportunities for many potential applications,e.g.,polymer processing,infrared countermeasures,and free-space communications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62175116 and 91950105)the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, Chinathe Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No. SJCX21_0276)
文摘We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on.
文摘After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.
基金Project(51204109)supported by the National Natural Science Foundation of China
文摘In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding parameters such as laser power, welding speed and defocusing value on both kinds of porosities were systemically analyzed respectively, and the shape and fluctuation of plume of the keyhole were observed to reflect the stability of the keyhole. The results show that increasing laser power or decreasing laser spot size can lead to the rising of both number and occupied area of pores in the weld; meanwhile, the plume fluctuates violently over the keyhole, which is always companied with the intense metallic vapor, liquid metal spatter and collapsing in the keyhole, thus more pores are generated in the weld. The porosity in the weld reaches the minimum at welding velocity of 2.0 m/min when laser power is 5 kW and defocusing value is 0.
基金Project(2012BAF08B02)supported by Key Project in the National Science and Technology Pillar Program During the Twelfth Five-year Plan Period,China
文摘Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.
文摘In this paper, we report that a diode-pumped thulium-doped double clad silica fiber laser can provide powers of up to 227 W at 1908 nm, corresponding to a slope efficiency of 54.3%, and an optical-to-optical efficiency of 51.2%. The output power, to the best of our knowledge, is the highest output at 1908 nm. The beam quality M2 factor is about 1.56. Also discussed in this paper is the dependence of the laser performance on fiber length.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Natural Science Foundation of Guangdong Province under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the ’Cross and Cooperative’ Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304409 and 61705028)the Natural Science Foundation of Chongqing City,China(Grant Nos.csct2013jcyjA4004 and cstc2017jcyjA0893)+1 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1500422)the Postgraduate Research Innovation Foundation of Chongqing City,China(Grant No.CYS17240)
文摘Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61077017 and 61378028)the Program for New Century Excellent Talents in University,China (Grant Nos.NCET-11-0069 and NCET-10-0291)the 111 Project (Grant No.B13042)
文摘We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金the National Natural Science Foundation of China(Grant No.6170031626)the Natural Science Foundation of Chongqing City,China(Grant Nos.cstc2018jcyjAX0585 and cstc2017zdzxX0011).
文摘We experimentally demonstrated a stable multi-wavelength bright-dark pulse pair in a mode-locked thulium-doped fiber laser(TDFL).The nonlinear polarization rotation(NPR)and nonlinear optical loop mirror(NOLM)were employed in a figure-eight cavity to allow for multi-wavelength mode-locking operation.By incorporating different lengths of high birefringence polarization-maintaining fiber(PMF),the fiber laser could operate stably in a multi-wavelength emission state.Compared with the absence of the PMF,the birefringence effect caused by PMF resulted in rich multi-wavelength optical spectra and better intensity symmetry and stability of the bright-dark pulse pair.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar,China(Grant No.2014A030306019)+6 种基金Pearl River S&T Nova Program of Guangzhou,China(Grant No.2014J2200008)Program for Outstanding Innovative Young Talents of Guangdong Province,China(Grant No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes,China(Grant No.YQ2015051)Science and Technology Project of Guangdong,China(Grant No.2016B090925004)Foundation for Young Talents in Higher Education of Guangdong,China(Grant No.2017KQNCX051)Science and Technology Program of Guangzhou,China(Grant No.201607010245)Scientific Research Foundation of Young Teacher of South China Normal University,China(Grant No.17KJ09)
文摘Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60372061)the Scientific Forefront and Interdisciplinary Innovation Project of Jilin University, China (Grant No. 200903296)
文摘We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008)the Program for New Century ExcellentTalents in University,China (Grant No. NCET-10-0067)
文摘In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61235008 and 61077076)
文摘A new method to achieve 2-μm pulsed fiber lasers based on a supercontinuum (SC) is demonstrated. The incident pump light is a pulsed SC which contains a pump light and a signal light at the same time. The initial signal of the seed laser is provided by the incident pump light and amplified in the cavity. Based on this, we obtain a 2-μm pulsed laser with pulse repetition rate of 50 kHz and pulse width of 2 ns from the Tm-doped fiber laser. This 2-μm pulsed laser is amplified by two stages of fiber amplifiers, then the amplified laser is used for mid-infrared (mid-IR) SC generation in a 10-m length of ZrF4-BaF2-LaF3-AIF3-NaF (ZBLAN) fiber. An all-fiber-integrated mid-IR SC with spectrum ranging from 1.8 ~tm to 4.3 μm is achieved. The maximal average output power of the mid-IR SC from the ZBLAN fiber is 1.24 W (average output power beyond 2.5 μm is 340 mW), corresponding to an output efficiency of 6.6% with respect to the 790-nm pump power.