Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objective...Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.展开更多
Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers e...Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC.展开更多
This work is intended to be a simple contribution to building a model able to implement theoretical results related to the random oriented fiber reinforced concrete in a procedure that could be used in structures anal...This work is intended to be a simple contribution to building a model able to implement theoretical results related to the random oriented fiber reinforced concrete in a procedure that could be used in structures analysis and design involving fiber reinforced elements. Here follows a short outline: In the introduction chapter the problem is presented together the work done. Section 2 develops some ancillary concepts of this material and its mechanical properties, while in Section 3, following the path of other researchers, the assumptions made to solve the problem are presented, together with the most relevant results related to presence of 3D randomly oriented fiber. In the following section a review of the mechanical process of fiber pull-out is done, and the results, mostly due to Victor Li researches, of a 3D randomly oriented synthetic fiber stress vs crack opening in a pull-out process from a cement matrix. In Section 5 the author, after making some assumptions about the configuration of the strain and crack geometry in the cross section where failure is assume to occur under flexural bending moment, the resultant stress is integrated to find the resultant internal moment vs increasing strain and crack width. In this analysis, the crack bridging law for synthetic fiber in FRC presented in the previous section is taken into account. In Section 6, a procedure to find a cross section configuration in equilibrium under external bending moment has been built. Under the assumption of a perfectly plastic collapse mechanism a numerical simulation is conducted on a specimen that undergoes a four-point bending test. A comparison with the trend of a similar test on a synthetic FRC sample has been done. The work is completed by the conclusions that could be inferred from this work.展开更多
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme...The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.展开更多
文摘Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.
基金the financial support from the National Natural Science Foundation of China(52178190 and 52078250)the Science and Technology on Near-Surface Detection Laboratory(6142414200505)+1 种基金the Interdisciplinary Innovation Fundation for Graduates,Nanjing University of Aeronautics and Astronautics(KXKCXJJ202005)The support provided by the China Scholarship Council(202006830096)during a visit of Zhangyu Wu to University College London。
文摘Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC.
文摘This work is intended to be a simple contribution to building a model able to implement theoretical results related to the random oriented fiber reinforced concrete in a procedure that could be used in structures analysis and design involving fiber reinforced elements. Here follows a short outline: In the introduction chapter the problem is presented together the work done. Section 2 develops some ancillary concepts of this material and its mechanical properties, while in Section 3, following the path of other researchers, the assumptions made to solve the problem are presented, together with the most relevant results related to presence of 3D randomly oriented fiber. In the following section a review of the mechanical process of fiber pull-out is done, and the results, mostly due to Victor Li researches, of a 3D randomly oriented synthetic fiber stress vs crack opening in a pull-out process from a cement matrix. In Section 5 the author, after making some assumptions about the configuration of the strain and crack geometry in the cross section where failure is assume to occur under flexural bending moment, the resultant stress is integrated to find the resultant internal moment vs increasing strain and crack width. In this analysis, the crack bridging law for synthetic fiber in FRC presented in the previous section is taken into account. In Section 6, a procedure to find a cross section configuration in equilibrium under external bending moment has been built. Under the assumption of a perfectly plastic collapse mechanism a numerical simulation is conducted on a specimen that undergoes a four-point bending test. A comparison with the trend of a similar test on a synthetic FRC sample has been done. The work is completed by the conclusions that could be inferred from this work.
基金National Natural Science Foundation of China(Grant Nos.51908188 and 51938011).
文摘The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.