Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasi...Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.展开更多
基金supported by the Beijing Outstanding Talent Training Funded Project(No.2015000020124G074)the 111 Project(No.D17021)the Changjiang Scholars and Innovative Research Team in University(No.IRT_16R07)
文摘Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.