By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical ...We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical lens group with different focus lengths. The bare fibers were mechanically bundled through high temperature ultraviolet adhesive after the coatings of the 127 fibers were stripped. The diameter of the fiber bundle was 6 mm. The total output power of such a bundle was 152 W with electro-optical conversion efficiency of 27.56%and the RMS power instability was less than ±1% within 3 h.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing the National High Technology Research and Development Program of China(No.2014AA032607)+1 种基金the National Natural Science Foundation of China(Nos.61404135,61405186,61308032,61308033)the National Key R&D Program of China(Nos.2016YFB0401804,2016YFB0402002)
文摘We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical lens group with different focus lengths. The bare fibers were mechanically bundled through high temperature ultraviolet adhesive after the coatings of the 127 fibers were stripped. The diameter of the fiber bundle was 6 mm. The total output power of such a bundle was 152 W with electro-optical conversion efficiency of 27.56%and the RMS power instability was less than ±1% within 3 h.