The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced at...The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.展开更多
New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high d...New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high dispersion at communication signals above 2 Mbit/s.Already the first commercially available multimode optical fibers(1979),developed from pure silica glass with a Ge-doped core,had much lower attenuation at signal frequencies of the order of 2-9 Mbit/s and above it.However,fiber core,cladding and coating materials,cable structures and materials,as well as manufacturing-,measurements-and test methods have been needed to be developed much further to get the reliable fiber cable communication networks.The important development stages and solutions to the most significant childhood problems of the optical fibers and cables are described in this paper.Now over 500 million km of optical fibers are manufactured and installed worldwide for the communication networks.The understanding of how to make the fibers with the very good transmission,mechanical and reliability properties exists at the manufacturers of the fibers and cables.展开更多
目的探讨超声弹性成像技术联合肝纤维化血清指标构建模型评估慢性乙型肝炎病毒(hepatitis b virus,HBV)患者炎症程度的临床价值。方法回顾性分析2019年3月至2022年10月杭州市西溪医院207例慢性乙型肝炎患者的超声弹性成像特征及临床资...目的探讨超声弹性成像技术联合肝纤维化血清指标构建模型评估慢性乙型肝炎病毒(hepatitis b virus,HBV)患者炎症程度的临床价值。方法回顾性分析2019年3月至2022年10月杭州市西溪医院207例慢性乙型肝炎患者的超声弹性成像特征及临床资料。采用多因素Logistic回归构建乙肝炎症程度评估模型并使用工作特性曲线(ROC)评估模型效能。结果预测模型由层粘连蛋白、肝硬度及脂肪衰减度联合构建,其评估乙肝炎症程度的AUC为82.1%,敏感性为82.8%,特异性为65.9%。Delong检验显示预测模型的诊断效能与各独立预测因子比较,差异有统计学意义(P<0.05)。结论超声弹性成像技术联合肝纤维化指标构建的模型可以有效预测HBV患者的中重度肝脏炎症。展开更多
Transmission characteristics of the side polished fiber were studied by experimental method.The side polished fibers with different depth and length were implemented,and the corresponding wavelength dependent loss was...Transmission characteristics of the side polished fiber were studied by experimental method.The side polished fibers with different depth and length were implemented,and the corresponding wavelength dependent loss was measured.Based on wheel fabrication,the side polished fibers were achieved with the low insertion loss and cost.Meanwhile,they can be artificially controlled for the use of evanescent field area and easy to system integration.展开更多
The effects of color centers' absorption on fibers and interferometric fiber optical gyroscopes(IFOGs) are studied in the paper. The irradiation induced attenuation(RIA) spectra of three types of polarization-mai...The effects of color centers' absorption on fibers and interferometric fiber optical gyroscopes(IFOGs) are studied in the paper. The irradiation induced attenuation(RIA) spectra of three types of polarization-maintaining fibers(PMFs), i.e.,P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers' absorption on RIA and mean wavelength shifts(MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient(RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments.展开更多
We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuatio...We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuation(RIA) spectra in the near-infrared region from 800 nm to 1700 nm were obtained. We find that the RIA at 1550 nm is related with hydroxyl(OH^-) absorption defects in addition to the identified self-trapped hole(STH) defects. Moreover, it is proposed and demonstrated that reduced OH^-absorption defects can decrease the RIA at 1550 nm. The RIA at 1550 nm has effectively declined from 27.7 d B/km to 3.0 dB/km through fabrication improvement. Preliminary explanations based on the unique fabrication processes were given to interpret the RIA characteristics of PSC-PCFs. The results show that the PSC-PCFs,which offer great advantages over conventional fibers, are promising and applicable to fiber sensors in harsh environments.展开更多
Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a gene...Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.展开更多
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded uptapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interf...A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded uptapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component.Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.展开更多
Degradation of UV transmitting optical fibers under nuclear reactor neutron exposure is reported. Four type of optical fibers (solarization resistant, H2-loaded;UV transmission standard OH;UV enhanced transmission, hi...Degradation of UV transmitting optical fibers under nuclear reactor neutron exposure is reported. Four type of optical fibers (solarization resistant, H2-loaded;UV transmission standard OH;UV enhanced transmission, high OH, H2-loaded;high OH, deep UV enhanced) were exposed to neutron fluences up to 4 x 1017 n/cm2. The optical transmission was measured off-line over the 200 nm – 900 nm spectral range and the build-up of color centers was monitored.展开更多
基金supported by the Special Fund for Development of National Major Scientific Instruments of China(Grant No.2013YQ04081504)the Program for Innovative Research Team in University,China(Grant No.IRT 1203)
文摘The compact super-fluorescent fiber source (SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation (RIA) self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation (RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current, double-pass backward (DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested. The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to 200 krad (Si) gamma-ray irradiation.
文摘New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high dispersion at communication signals above 2 Mbit/s.Already the first commercially available multimode optical fibers(1979),developed from pure silica glass with a Ge-doped core,had much lower attenuation at signal frequencies of the order of 2-9 Mbit/s and above it.However,fiber core,cladding and coating materials,cable structures and materials,as well as manufacturing-,measurements-and test methods have been needed to be developed much further to get the reliable fiber cable communication networks.The important development stages and solutions to the most significant childhood problems of the optical fibers and cables are described in this paper.Now over 500 million km of optical fibers are manufactured and installed worldwide for the communication networks.The understanding of how to make the fibers with the very good transmission,mechanical and reliability properties exists at the manufacturers of the fibers and cables.
文摘目的探讨超声弹性成像技术联合肝纤维化血清指标构建模型评估慢性乙型肝炎病毒(hepatitis b virus,HBV)患者炎症程度的临床价值。方法回顾性分析2019年3月至2022年10月杭州市西溪医院207例慢性乙型肝炎患者的超声弹性成像特征及临床资料。采用多因素Logistic回归构建乙肝炎症程度评估模型并使用工作特性曲线(ROC)评估模型效能。结果预测模型由层粘连蛋白、肝硬度及脂肪衰减度联合构建,其评估乙肝炎症程度的AUC为82.1%,敏感性为82.8%,特异性为65.9%。Delong检验显示预测模型的诊断效能与各独立预测因子比较,差异有统计学意义(P<0.05)。结论超声弹性成像技术联合肝纤维化指标构建的模型可以有效预测HBV患者的中重度肝脏炎症。
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxithe Program for Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Transmission characteristics of the side polished fiber were studied by experimental method.The side polished fibers with different depth and length were implemented,and the corresponding wavelength dependent loss was measured.Based on wheel fabrication,the side polished fibers were achieved with the low insertion loss and cost.Meanwhile,they can be artificially controlled for the use of evanescent field area and easy to system integration.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘The effects of color centers' absorption on fibers and interferometric fiber optical gyroscopes(IFOGs) are studied in the paper. The irradiation induced attenuation(RIA) spectra of three types of polarization-maintaining fibers(PMFs), i.e.,P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers' absorption on RIA and mean wavelength shifts(MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient(RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575012 and 61575013)the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2013YQ040877)
文摘We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuation(RIA) spectra in the near-infrared region from 800 nm to 1700 nm were obtained. We find that the RIA at 1550 nm is related with hydroxyl(OH^-) absorption defects in addition to the identified self-trapped hole(STH) defects. Moreover, it is proposed and demonstrated that reduced OH^-absorption defects can decrease the RIA at 1550 nm. The RIA at 1550 nm has effectively declined from 27.7 d B/km to 3.0 dB/km through fabrication improvement. Preliminary explanations based on the unique fabrication processes were given to interpret the RIA characteristics of PSC-PCFs. The results show that the PSC-PCFs,which offer great advantages over conventional fibers, are promising and applicable to fiber sensors in harsh environments.
基金supported by the USDA-ARS Research Project#6054-21000-017-0ODCotton Incorporated-sponsored project#19-858
文摘Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.
文摘A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded uptapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component.Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
文摘Degradation of UV transmitting optical fibers under nuclear reactor neutron exposure is reported. Four type of optical fibers (solarization resistant, H2-loaded;UV transmission standard OH;UV enhanced transmission, high OH, H2-loaded;high OH, deep UV enhanced) were exposed to neutron fluences up to 4 x 1017 n/cm2. The optical transmission was measured off-line over the 200 nm – 900 nm spectral range and the build-up of color centers was monitored.