A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing perfo...A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.展开更多
Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind...Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind of single-polarization single-mode HC-NCF with nested U-type cladding elements is proposed.To achieve the single-polarization single-mode transmission,we use two different silica tubes in thickness,which satisfy the resonance and anti-resonance conditions on the U-type cladding elements and the cladding tubes,respectively.Besides,the elliptical elements are introduced to achieve good single-mode performance.By studying the influences of the structure parameters on the propagation characteristics,the optimized structure parameters are obtained.The simulation results show that when the wavelength is fixed at 1550 nm,the single-polarization single-mode transmission is achieved,with the polarization extinction ratio of 25749 and minimum high-order mode extinction ratio of 174.Furthermore,the confinement loss is only 0.0015 dB/m.展开更多
The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio...The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.展开更多
基金the National Natural Science Foundation of China(Grant No.61935007).
文摘A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.
基金supported by the National Natural Science Foundation of China(Grant No.61935007)。
文摘Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind of single-polarization single-mode HC-NCF with nested U-type cladding elements is proposed.To achieve the single-polarization single-mode transmission,we use two different silica tubes in thickness,which satisfy the resonance and anti-resonance conditions on the U-type cladding elements and the cladding tubes,respectively.Besides,the elliptical elements are introduced to achieve good single-mode performance.By studying the influences of the structure parameters on the propagation characteristics,the optimized structure parameters are obtained.The simulation results show that when the wavelength is fixed at 1550 nm,the single-polarization single-mode transmission is achieved,with the polarization extinction ratio of 25749 and minimum high-order mode extinction ratio of 174.Furthermore,the confinement loss is only 0.0015 dB/m.
基金Projects(51174236,51134003)supported by the National Natural Science Foundation of ChinaProject(2011CB606306)supported by the National Basic Research Program of ChinaProject(PMM-SKL-4-2012)supported by the Opening Project of State Key Laboratory of Porous Metal Materials(Northwest Institute for Nonferrous Metal Research),China
文摘The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.