A novel three-ring-core few-mode fiber with large effective area and low nonlinear coefficient is proposed in this paper. The fiber characteristics based on the full-vector finite element method(FEM) with perfect matc...A novel three-ring-core few-mode fiber with large effective area and low nonlinear coefficient is proposed in this paper. The fiber characteristics based on the full-vector finite element method(FEM) with perfect matched layer boundary conditions show that four supermodes with large effective area, low nonlinear coefficient and low differential mode group delay(DMGD) are achieved. With the increase of input wavelength, the effective areas of three-ring-core few-mode fiber are increased, and the nonlinear coefficients are decreased. The bending losses are increased with the increase of input wavelength, and are decreased with the increase of bending radius. Moreover, the proposed fiber performs a nonlinear coefficient and DMGD flattened profile at a large wavelength range.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61671227 and 61431009)the Shandong Provincial Natural Science Foundation(No.ZR2011FM015)the Taishan Scholar Research Fund of Shandong Province
文摘A novel three-ring-core few-mode fiber with large effective area and low nonlinear coefficient is proposed in this paper. The fiber characteristics based on the full-vector finite element method(FEM) with perfect matched layer boundary conditions show that four supermodes with large effective area, low nonlinear coefficient and low differential mode group delay(DMGD) are achieved. With the increase of input wavelength, the effective areas of three-ring-core few-mode fiber are increased, and the nonlinear coefficients are decreased. The bending losses are increased with the increase of input wavelength, and are decreased with the increase of bending radius. Moreover, the proposed fiber performs a nonlinear coefficient and DMGD flattened profile at a large wavelength range.