In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperatu...In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.展开更多
A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as...A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.展开更多
An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified b...An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.展开更多
A high sensitive long period fiber grating(LPFG) sensor for the detection of nitrite is proposed, which is realized by coating multiple poly(sodium 4-styrensulfonate)(PSS) and poly(diallyldimethylammonium) chl...A high sensitive long period fiber grating(LPFG) sensor for the detection of nitrite is proposed, which is realized by coating multiple poly(sodium 4-styrensulfonate)(PSS) and poly(diallyldimethylammonium) chloride (PDDA) layers on the fiber grating surface. The sensitivity of this LPFG sensor is maximum when the number of assembled layers is 70. Under this condition, a nitrite concentration of 3×10^-3 mol/L, which is lower than the National Food Additive Standard, 4.2×10^-3 mol/L, can be distinguished. The sensitivity is further increased by 30% when nitrite was determined in the sucrose solution with a concentration of 65%, which provides a new solution for the best refraction index approaching matched index of the fiber cladding. Compared with chemical methods, this nitrite detection technology offers some advantages, such as high accuracy, non toxicity, high speed, low cost, without chemical reagent, and is suitable for foodstuff security detection.展开更多
A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substra...A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.展开更多
Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials....Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials.New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system.To achieve an accurate assessment of the health conditions of pipeline infrastructure,obtaining as many precise operating parameters as possible,particularly at some critical parts of the pipeline,is necessary.Therefore,a novel type of fiber grating strain sensor array is proposed herein to monitor the pipeline hoop strain.The sensor utilizes fiber grating characteristics such as light weight,corrosion resistance,remote transmission,and strong environmental adaptability.The fiber containing the grating measurement points is implanted into the composite material to complete the sensitization encapsulation and protection of the bare fiber grating.The design of the sensor array fulfills the requirements for monitoring pipeline mass data,making it easy to form a pipeline health monitoring sensor network.The sensor sensitivity is researched by using a combination of theoretical and experimental analysis.A sensitivity test,as well as linearity and stability tests,are performed on the sensor.The experimental results show that the average sensitivity of the sensor is 14.86 pm/με,and the error from the theoretical calculation analysis value is 8.75%.Due to its high reliability,good linear response and long-term stability,and the ability to reflect the exact strain change of the outer wall of the pipeline,the designed sensor can support longterm online pipeline monitoring.The fiber grating sensor array network has successfully realized the monitoring of the pipeline’s internal operation by using external strain changes.In addition to the performance benefits,there are other merits associated with the applicability of the sensor namely simple structure,compact size,manufacturing ease,and exterior installation ease.展开更多
In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orien...In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit,thus the calibration method is needed.Based on an analysis of InGaAs imaging model,least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position.The experimental results show that the methods are effective and the demodulation system precision is improved.展开更多
Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical wa...Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.展开更多
A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
Based on the advantages of the fiber Bragg grating sensing technology,this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor,analyses the theory and characteristics,illustrat...Based on the advantages of the fiber Bragg grating sensing technology,this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor,analyses the theory and characteristics,illustrates the key technology and method to make the fiber Bragg grating sensor for the smart concrete,and proves the feasibility with experiments.The results indicate that the smart concrete with fiber Bragg grating sensors is feasible in the structure monitoring and damage diagnosing in the long run.展开更多
A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing ...A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.展开更多
Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards ...Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.展开更多
A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteri...A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.展开更多
The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fib...The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.展开更多
A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with saw...A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.展开更多
Aiming at the requirements of installation and work environment of metal-based fiber Bragg grating(FBG)sensor,a resistance spot welding method is presented.Firstly,the effect of welding parameters on welding quality i...Aiming at the requirements of installation and work environment of metal-based fiber Bragg grating(FBG)sensor,a resistance spot welding method is presented.Firstly,the effect of welding parameters on welding quality is discussed theoretically,and a suitable resistance spot welding method for the metal-based FBG sensor is proposed for the first time.Then through serial resistance spot welding tests,the feasibility and practicability of the method are verified,and optimal welding parameters for two different tested metals are obtained.Fatigue performance test validates FBG sensors installed by the proposed method with good fatigue properties and long-term stable measurement performance.The research results can provide technical guidance for engineering structure long-term safety monitoring.展开更多
In this paper, the reflective spectra of a refraction index sensor were analyzed based on fiber grating F-P cavity. The sensor was constituted by two identical fiber gratings. Compared with the refraction index sensor...In this paper, the reflective spectra of a refraction index sensor were analyzed based on fiber grating F-P cavity. The sensor was constituted by two identical fiber gratings. Compared with the refraction index sensor using one fiber grating, the fiber grating F-P cavity sensor has narrower resonant peak and it can be used for more accurate measurement. The resonant peaks in the reflective spectra of the sensor are changed with small changes of the refraction index of the measured chemical liquids or cell samples. So it has potential applications in biology and chemistry.展开更多
An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the ca...An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.展开更多
Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field....Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement.展开更多
基金Supported by Science & Engineering Research Council of Singapore (052 118 0052)
文摘In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.
基金supported by the 11th Five Years Key Programs for Science and Technology Development of China under Grant No. 2006BAK04B02Natural Science Foundation of Shandong Province under Grant No. 2006ZRC01022.
文摘A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.
基金National Natural Science Foundation of China(No.51935011)Natural Science Foundation of Shanxi Province of China(No.201901D111160)Innovative Research Group Project of National Science Foundation of China(No.51821003)。
文摘An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.
基金Supported by the National Natural Science Foundation of China(Nos.60707016 and 60807030)
文摘A high sensitive long period fiber grating(LPFG) sensor for the detection of nitrite is proposed, which is realized by coating multiple poly(sodium 4-styrensulfonate)(PSS) and poly(diallyldimethylammonium) chloride (PDDA) layers on the fiber grating surface. The sensitivity of this LPFG sensor is maximum when the number of assembled layers is 70. Under this condition, a nitrite concentration of 3×10^-3 mol/L, which is lower than the National Food Additive Standard, 4.2×10^-3 mol/L, can be distinguished. The sensitivity is further increased by 30% when nitrite was determined in the sucrose solution with a concentration of 65%, which provides a new solution for the best refraction index approaching matched index of the fiber cladding. Compared with chemical methods, this nitrite detection technology offers some advantages, such as high accuracy, non toxicity, high speed, low cost, without chemical reagent, and is suitable for foodstuff security detection.
基金Projects(51875585, 51875584, 51935013) supported by the National Natural Science Foundation of ChinaProject(2020JJ4247) supported by the Natural Science Foundation of Hunan Province,ChinaProject(ZHD202001) supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China。
文摘A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.
基金supported by the National Key R&D Program of China(Grants 2018YFF0214700)Hubei Province Science and Technology Special Major Project(2016AAA008)New Research and Development Agency Project of Zhongshan Science and Technology Bureau(2017F2FC003)in China.
文摘Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials.New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system.To achieve an accurate assessment of the health conditions of pipeline infrastructure,obtaining as many precise operating parameters as possible,particularly at some critical parts of the pipeline,is necessary.Therefore,a novel type of fiber grating strain sensor array is proposed herein to monitor the pipeline hoop strain.The sensor utilizes fiber grating characteristics such as light weight,corrosion resistance,remote transmission,and strong environmental adaptability.The fiber containing the grating measurement points is implanted into the composite material to complete the sensitization encapsulation and protection of the bare fiber grating.The design of the sensor array fulfills the requirements for monitoring pipeline mass data,making it easy to form a pipeline health monitoring sensor network.The sensor sensitivity is researched by using a combination of theoretical and experimental analysis.A sensitivity test,as well as linearity and stability tests,are performed on the sensor.The experimental results show that the average sensitivity of the sensor is 14.86 pm/με,and the error from the theoretical calculation analysis value is 8.75%.Due to its high reliability,good linear response and long-term stability,and the ability to reflect the exact strain change of the outer wall of the pipeline,the designed sensor can support longterm online pipeline monitoring.The fiber grating sensor array network has successfully realized the monitoring of the pipeline’s internal operation by using external strain changes.In addition to the performance benefits,there are other merits associated with the applicability of the sensor namely simple structure,compact size,manufacturing ease,and exterior installation ease.
文摘In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit,thus the calibration method is needed.Based on an analysis of InGaAs imaging model,least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position.The experimental results show that the methods are effective and the demodulation system precision is improved.
基金supported by the National Natural Science Foundation of China under Grant No. 60671027the Application Basis Research Foundation of Sichuan Province under Grant No. 07JY029-089.
文摘Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.
文摘Based on the advantages of the fiber Bragg grating sensing technology,this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor,analyses the theory and characteristics,illustrates the key technology and method to make the fiber Bragg grating sensor for the smart concrete,and proves the feasibility with experiments.The results indicate that the smart concrete with fiber Bragg grating sensors is feasible in the structure monitoring and damage diagnosing in the long run.
基金Project supported by the Natural Science Foundation of China (Grant Nos.62075107,61935006,62090064,and62090065)K.C.Wong Magna Fund in Ningbo University。
文摘A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
文摘Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.
基金supported by the National Natural Science Foundation of China under Grant No. 60537040.
文摘A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.
文摘The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.
基金Doctoral Foundation of Ministry of Education of China (No. 20040056008)
文摘A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.
文摘Aiming at the requirements of installation and work environment of metal-based fiber Bragg grating(FBG)sensor,a resistance spot welding method is presented.Firstly,the effect of welding parameters on welding quality is discussed theoretically,and a suitable resistance spot welding method for the metal-based FBG sensor is proposed for the first time.Then through serial resistance spot welding tests,the feasibility and practicability of the method are verified,and optimal welding parameters for two different tested metals are obtained.Fatigue performance test validates FBG sensors installed by the proposed method with good fatigue properties and long-term stable measurement performance.The research results can provide technical guidance for engineering structure long-term safety monitoring.
基金National Natural Science Foundation of China(10774058)
文摘In this paper, the reflective spectra of a refraction index sensor were analyzed based on fiber grating F-P cavity. The sensor was constituted by two identical fiber gratings. Compared with the refraction index sensor using one fiber grating, the fiber grating F-P cavity sensor has narrower resonant peak and it can be used for more accurate measurement. The resonant peaks in the reflective spectra of the sensor are changed with small changes of the refraction index of the measured chemical liquids or cell samples. So it has potential applications in biology and chemistry.
文摘An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.
基金supported by the National Natural Science Foundation of China(Grant No.51979002).
文摘Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement.