A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation betw...A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained, and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that: in the strain range of 0-0. 8 mm, the relation between the relative shift of Bragg wavelength and applied strain is linear, and the dispersion of double FBG wavelength at the range of -25℃- 60℃ is 0-0. 002 nm. The strain sensitivity of the displacement sensor configuration is 0. 171 nm/με, and is nearly twice than that of single FBG sensor.展开更多
A technique for compensation of temperature effects in fiber grating sensors is reported. For strain sensors and other sensors related to strain such as electromagnetic sensors, a novel structure is designed, which us...A technique for compensation of temperature effects in fiber grating sensors is reported. For strain sensors and other sensors related to strain such as electromagnetic sensors, a novel structure is designed, which uses two fiber Bragg gratings (FBGs) as strain differential sensor and has temperature effects cancelled. Using this technique, the stress sensitivity has been amplified and gets up to 0.226 nm/N, the total variation in wavelength difference within the range of 3-45 °C is 0.03 nm, 1/14 of the uncompensated FBG. The structure can be used in the temperature-insensitive static strain measurement and minor-vibration measurement.展开更多
We demonstrate an adjustable pure dispersion slope compensating-module based on strain-chirped fiber Bragg gratings. The center wavelength of the module is preserved while the pure dispersion slope is tuned.
Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The pla...Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.展开更多
During last decades, sensor elements based on the fiber Bragg grating (FBG) have been widely studied and developed due to the advantages of immunity to electromagnetic interference, compact size, high precision, and...During last decades, sensor elements based on the fiber Bragg grating (FBG) have been widely studied and developed due to the advantages of immunity to electromagnetic interference, compact size, high precision, and so on. The FBG itself is sensitive to axial strain and temperature variation directly and can indirectly measure these complex physical parameters, such as pressure, displacement, and vibration, by using some specially designed elastic structures to convert them into the axial strain of the FBG. Whether the FBG is fixed on the measured object to measure the strain directly or fixed on an elastic structure body to measure other physical quantities, these types of FBGs could be collectively called as strain sensing FBGs. The packaging of the FBG has important influence on FBG characteristics that directly affect the measurement accuracy, such as strain transfer, temperature characteristic, and spectral shape. This paper summarizes the packaging methods and corresponding temperature compensation methods of the currently reported strain sensing FBGs, focusing especially on fully pasted FBG, pre-stretched FBG with double-end fixed, and metallic packaging. Furthermore, the advantages and drawbacks of different packaging methods have been analyzed, which can provide a reference for future researches.展开更多
Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electro...Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electromagnetic interference,and afield measurement via the fiber network.However,the fiber-optic based sensor may bear the temperature cross-talk,especially under the warming condition for bio-activating the immune molecules.In this study,we proposed a highly birefringent microfiber Bragg grating for immunosensing with the temperature-compensation.The birefringent microfiber was drawn from the elliptical cladding multimode fiber that was ablated by the CO2 laser.The considerably large energy overlap region offered by the original multimode fiber favored the efficient inscription of FBG with high reflectivity.The dual reso-nances derived by the orthogonal polarization states presented similar temperature responsivities but significantly different ambient refractive index sensitivities,allowing the temperature-compensational RI sensing.The human immunoglobulin G(IgG)molecules were anchored on the surface of the microfiber grating probe by the covalent functionalization technique to enable the specific detection of the anti-IgG molecule.The proposed method promises a high-efficiency and low-cost design for the microfiber Bragg grating-based biosensor without being subjected to the temperature cross-sensitivity.展开更多
An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified b...An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.展开更多
A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
<div style="text-align:justify;"> In this paper, a hybrid optical fiber structure for solution concentration measurement with the temperature compensation is proposed. The structure consists of long pe...<div style="text-align:justify;"> In this paper, a hybrid optical fiber structure for solution concentration measurement with the temperature compensation is proposed. The structure consists of long period fiber grating (LPFG) and single mode-multimode-single mode (SMS) fiber structures. The sensing mechanism of the device is studied and verified by experiments. LPFG is sensitive to solution concentration and is affected by temperature crosstalk. SMS structure is not affected by solution concentration, but sensitive to ambient temperature. It can be used as a temperature compensation system. The sensitivity coefficients of LPFG and SMS on temperature and concentration were measured experimentally, and a dual-wavelength matrix was established to realize simultaneous measurement of solution temperature and concentration. </div>展开更多
文摘A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained, and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that: in the strain range of 0-0. 8 mm, the relation between the relative shift of Bragg wavelength and applied strain is linear, and the dispersion of double FBG wavelength at the range of -25℃- 60℃ is 0-0. 002 nm. The strain sensitivity of the displacement sensor configuration is 0. 171 nm/με, and is nearly twice than that of single FBG sensor.
基金This work was supported by the National 863 Project of China (No. 2002AA313110) the project of National Construction Ministry (01-4-048)
文摘A technique for compensation of temperature effects in fiber grating sensors is reported. For strain sensors and other sensors related to strain such as electromagnetic sensors, a novel structure is designed, which uses two fiber Bragg gratings (FBGs) as strain differential sensor and has temperature effects cancelled. Using this technique, the stress sensitivity has been amplified and gets up to 0.226 nm/N, the total variation in wavelength difference within the range of 3-45 °C is 0.03 nm, 1/14 of the uncompensated FBG. The structure can be used in the temperature-insensitive static strain measurement and minor-vibration measurement.
文摘We demonstrate an adjustable pure dispersion slope compensating-module based on strain-chirped fiber Bragg gratings. The center wavelength of the module is preserved while the pure dispersion slope is tuned.
文摘Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.
基金This paper was partially supported by the Natural Science Foundation of China under Grant No. 51605348, the Natural Science Foundation of Hubei province under Grants No. 2016CFB116, and the Project of China Postdoctoral Science Foundation under Grant No. 2015M572208.
文摘During last decades, sensor elements based on the fiber Bragg grating (FBG) have been widely studied and developed due to the advantages of immunity to electromagnetic interference, compact size, high precision, and so on. The FBG itself is sensitive to axial strain and temperature variation directly and can indirectly measure these complex physical parameters, such as pressure, displacement, and vibration, by using some specially designed elastic structures to convert them into the axial strain of the FBG. Whether the FBG is fixed on the measured object to measure the strain directly or fixed on an elastic structure body to measure other physical quantities, these types of FBGs could be collectively called as strain sensing FBGs. The packaging of the FBG has important influence on FBG characteristics that directly affect the measurement accuracy, such as strain transfer, temperature characteristic, and spectral shape. This paper summarizes the packaging methods and corresponding temperature compensation methods of the currently reported strain sensing FBGs, focusing especially on fully pasted FBG, pre-stretched FBG with double-end fixed, and metallic packaging. Furthermore, the advantages and drawbacks of different packaging methods have been analyzed, which can provide a reference for future researches.
基金supported by National Natural Science Foundation of China(61775082,U1701268,61405074,61805106)Guangdong Natural Science Foundation(2015A030313324,2018A030313677)+2 种基金the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2019BT02X105)Youth Top-notch Scientific and Technological Innovation Talent of Guangdong Special Support Plan(2019TQ05X136)the Fundamental Research Funds for the Central Universities.
文摘Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electromagnetic interference,and afield measurement via the fiber network.However,the fiber-optic based sensor may bear the temperature cross-talk,especially under the warming condition for bio-activating the immune molecules.In this study,we proposed a highly birefringent microfiber Bragg grating for immunosensing with the temperature-compensation.The birefringent microfiber was drawn from the elliptical cladding multimode fiber that was ablated by the CO2 laser.The considerably large energy overlap region offered by the original multimode fiber favored the efficient inscription of FBG with high reflectivity.The dual reso-nances derived by the orthogonal polarization states presented similar temperature responsivities but significantly different ambient refractive index sensitivities,allowing the temperature-compensational RI sensing.The human immunoglobulin G(IgG)molecules were anchored on the surface of the microfiber grating probe by the covalent functionalization technique to enable the specific detection of the anti-IgG molecule.The proposed method promises a high-efficiency and low-cost design for the microfiber Bragg grating-based biosensor without being subjected to the temperature cross-sensitivity.
基金National Natural Science Foundation of China(No.51935011)Natural Science Foundation of Shanxi Province of China(No.201901D111160)Innovative Research Group Project of National Science Foundation of China(No.51821003)。
文摘An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.
文摘<div style="text-align:justify;"> In this paper, a hybrid optical fiber structure for solution concentration measurement with the temperature compensation is proposed. The structure consists of long period fiber grating (LPFG) and single mode-multimode-single mode (SMS) fiber structures. The sensing mechanism of the device is studied and verified by experiments. LPFG is sensitive to solution concentration and is affected by temperature crosstalk. SMS structure is not affected by solution concentration, but sensitive to ambient temperature. It can be used as a temperature compensation system. The sensitivity coefficients of LPFG and SMS on temperature and concentration were measured experimentally, and a dual-wavelength matrix was established to realize simultaneous measurement of solution temperature and concentration. </div>