Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrog...Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices.展开更多
Bamboo fibers were used as source to prepare cellulose hydrogel films for cell cultivation scaffold. The preparation of cellulose solutions was carried out by three different dissolving methods with NaOH-based and NaO...Bamboo fibers were used as source to prepare cellulose hydrogel films for cell cultivation scaffold. The preparation of cellulose solutions was carried out by three different dissolving methods with NaOH-based and NaOH/urea aqueous solutions and DMAc/LiCl solution. Several hydrogel films were elaborated and their properties were compared to evaluate the effect of the dissolving method. It was found that tensile strength of the resultant hydrogel films increased from 21 to 66 N/mm2 when DMAc/LiCl was used instead of the NaOH/urea solution. The same tendency was observed in the obtained elongation values. Moreover, a remarkable difference in fibroblast cell cultivation was observed in higher cell density, when DMAc/LiCl method was used. The obtained results with DMAc/LiCl also were seen to be higher than the results for PS dish used as control. However, low cytocompatibility was observed when NaOH and NaOH/urea methods were used. The obtained results showed that hydrogel films elaborated with cellulose solution prepared with DMAc/LiCl method exhibited good cytocompatibility for the cell cultivation scaffold.展开更多
Rehabilitation and regenerative medicine are two promising approaches for spinal cord injury(SCI)recovery,but their combination has been limited.Conductive biomaterials could bridge regenerative scaffolds with electri...Rehabilitation and regenerative medicine are two promising approaches for spinal cord injury(SCI)recovery,but their combination has been limited.Conductive biomaterials could bridge regenerative scaffolds with electrical stimulation by inducing axon regeneration and supporting physiological electrical signal transmission.Here,we developed aligned conductive hydrogel fibers by incorporating carbon nanotubes(CNTs)into methacrylate acylated gelatin(GelMA)hydrogel via rotating liquid bath electrospinning.The electrospun CNT/GelMA hydrogel fibers mimicked the micro-scale aligned structure,conductivity,and soft mechanical properties of neural axons.For in vitro studies,CNT/GelMA hydrogel fibers supported PC12 cell proliferation and aligned adhesion,which was enhanced by electrical stimulation(ES).Similarly,the combination of aligned CNT/GelMA hydrogel fibers and ES promoted neuronal differentiation and axon-like neurite sprouting in neural stem cells(NSCs).Furthermore,CNT/GelMA hydrogel fibers were transplanted into a T9 transection rat spinal cord injury model for in vivo studies.The results showed that the incorporating CNTs could remain at the injury site with the GelMA fibers biodegraded and improve the conductivity of regenerative tissue.The aligned structure of the hydrogel could induce the neural fibers regeneration,and the ES enhanced the remyelination and axonal regeneration.Behavioral assessments and electrophysiological results suggest that the combination of aligned CNT/GelMA hydrogel fibers and ES could significantly restore motor function in rats.This study demonstrates that conductive aligned CNT/GelMA hydrogel fibers can not only induce neural regeneration as a scaffold but also support ESto promote spinal cord injury recovery.The conductive hydrogel fibers enable merging regenerative medicine and rehabilitation,showing great potential for satisfactory locomotor recovery after SCI.展开更多
基金supported by the National Natural Science Foundation of China(No.21778052 and No.21975240)by the Natural Science Foundation of Anhui Province(No.1908085J19)the Talent Research Foundation of Hefei University(No.18-19RC08)。
文摘Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices.
文摘Bamboo fibers were used as source to prepare cellulose hydrogel films for cell cultivation scaffold. The preparation of cellulose solutions was carried out by three different dissolving methods with NaOH-based and NaOH/urea aqueous solutions and DMAc/LiCl solution. Several hydrogel films were elaborated and their properties were compared to evaluate the effect of the dissolving method. It was found that tensile strength of the resultant hydrogel films increased from 21 to 66 N/mm2 when DMAc/LiCl was used instead of the NaOH/urea solution. The same tendency was observed in the obtained elongation values. Moreover, a remarkable difference in fibroblast cell cultivation was observed in higher cell density, when DMAc/LiCl method was used. The obtained results with DMAc/LiCl also were seen to be higher than the results for PS dish used as control. However, low cytocompatibility was observed when NaOH and NaOH/urea methods were used. The obtained results showed that hydrogel films elaborated with cellulose solution prepared with DMAc/LiCl method exhibited good cytocompatibility for the cell cultivation scaffold.
基金supported by Beijing Natural Science Foundation(No.L232091 and No.2184113)National Natural Science Foundation of China(No.31800813 and No.81804119).
文摘Rehabilitation and regenerative medicine are two promising approaches for spinal cord injury(SCI)recovery,but their combination has been limited.Conductive biomaterials could bridge regenerative scaffolds with electrical stimulation by inducing axon regeneration and supporting physiological electrical signal transmission.Here,we developed aligned conductive hydrogel fibers by incorporating carbon nanotubes(CNTs)into methacrylate acylated gelatin(GelMA)hydrogel via rotating liquid bath electrospinning.The electrospun CNT/GelMA hydrogel fibers mimicked the micro-scale aligned structure,conductivity,and soft mechanical properties of neural axons.For in vitro studies,CNT/GelMA hydrogel fibers supported PC12 cell proliferation and aligned adhesion,which was enhanced by electrical stimulation(ES).Similarly,the combination of aligned CNT/GelMA hydrogel fibers and ES promoted neuronal differentiation and axon-like neurite sprouting in neural stem cells(NSCs).Furthermore,CNT/GelMA hydrogel fibers were transplanted into a T9 transection rat spinal cord injury model for in vivo studies.The results showed that the incorporating CNTs could remain at the injury site with the GelMA fibers biodegraded and improve the conductivity of regenerative tissue.The aligned structure of the hydrogel could induce the neural fibers regeneration,and the ES enhanced the remyelination and axonal regeneration.Behavioral assessments and electrophysiological results suggest that the combination of aligned CNT/GelMA hydrogel fibers and ES could significantly restore motor function in rats.This study demonstrates that conductive aligned CNT/GelMA hydrogel fibers can not only induce neural regeneration as a scaffold but also support ESto promote spinal cord injury recovery.The conductive hydrogel fibers enable merging regenerative medicine and rehabilitation,showing great potential for satisfactory locomotor recovery after SCI.