The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image co...The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber.展开更多
Collagen fibers provide a good example of making strong micro-or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and crosslinked organization in a bottom-up manner.Mimicking the architectur...Collagen fibers provide a good example of making strong micro-or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and crosslinked organization in a bottom-up manner.Mimicking the architectural features of collagen fibers has been shown to be a promising approach to develop carbon nanotube(CNT)fibers of high performance.In the present work,an elastic model is developed to describe the load transfer and failure propagation within the bioinspired CNT bundles,and to establish the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters such as the CNT aspect ratio and longitudinal gap,interface cross-link density,and the functionalizationinduced degradation in CNTs,etc.With the model,the stress distributions along the CNT-CNT interface as well as in every individual CNT are well captured,and the failure propagation along the interface and its effects on the mechanical properties of the CNT bundles are predicted.The work may provide useful guidelines for the design of novel CNT fibers in practice.展开更多
The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is an...The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber p!gtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.展开更多
基金the National Natural Science Foundation of China(Nos.10972097,11062007)Specialized Research Fund for the Doctoral Programof Higher Education of China(No.20101514120005)the Inner Mongolia Natural Science Foundation of China(No.2010MS0703)
文摘The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber.
基金support from IHPC,A*STARpartially supported by the China Postdoctoral Science Foundation(Grant No.2014M562055)
文摘Collagen fibers provide a good example of making strong micro-or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and crosslinked organization in a bottom-up manner.Mimicking the architectural features of collagen fibers has been shown to be a promising approach to develop carbon nanotube(CNT)fibers of high performance.In the present work,an elastic model is developed to describe the load transfer and failure propagation within the bioinspired CNT bundles,and to establish the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters such as the CNT aspect ratio and longitudinal gap,interface cross-link density,and the functionalizationinduced degradation in CNTs,etc.With the model,the stress distributions along the CNT-CNT interface as well as in every individual CNT are well captured,and the failure propagation along the interface and its effects on the mechanical properties of the CNT bundles are predicted.The work may provide useful guidelines for the design of novel CNT fibers in practice.
文摘The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber p!gtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.