Time domain ABCD matrix formalism is a useful model for analyzing the characteristics of actively modelocked fiber laser. Based on this model and given more consideration on the influences of optical fiber dispersion ...Time domain ABCD matrix formalism is a useful model for analyzing the characteristics of actively modelocked fiber laser. Based on this model and given more consideration on the influences of optical fiber dispersion and optical fiber nonlinearity, the laser characteristic of actively modelocked fiber laser is analyzed, and the comparision of the theoretical analysis results with experimental ones is given.展开更多
We present a 10-GHz hybrid actively and passively mode-locked fiber ring laser with a dispersion im-balanced nonlinear loop mirror (DI-NOLM), whose nonlinear switching characteristic can make the laser operate at addi...We present a 10-GHz hybrid actively and passively mode-locked fiber ring laser with a dispersion im-balanced nonlinear loop mirror (DI-NOLM), whose nonlinear switching characteristic can make the laser operate at additive pulse modelocking (APM) mode or additive pulse limiting (APL) mode. When the laser operated at APM, 5.45 ps of transform-limited pulse series were obtained. When the laser was biased at APL region, supermode noise was suppressed and the laser output was more stable.展开更多
文摘Time domain ABCD matrix formalism is a useful model for analyzing the characteristics of actively modelocked fiber laser. Based on this model and given more consideration on the influences of optical fiber dispersion and optical fiber nonlinearity, the laser characteristic of actively modelocked fiber laser is analyzed, and the comparision of the theoretical analysis results with experimental ones is given.
文摘We present a 10-GHz hybrid actively and passively mode-locked fiber ring laser with a dispersion im-balanced nonlinear loop mirror (DI-NOLM), whose nonlinear switching characteristic can make the laser operate at additive pulse modelocking (APM) mode or additive pulse limiting (APL) mode. When the laser operated at APM, 5.45 ps of transform-limited pulse series were obtained. When the laser was biased at APL region, supermode noise was suppressed and the laser output was more stable.