The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed int...The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production.展开更多
A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve ...Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700℃ within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.展开更多
Among the major challenges facing the modern era of technological and industrial advancements are pollution and exponentially growing energy consumption.Pollution continues to be a menace affecting different aspects o...Among the major challenges facing the modern era of technological and industrial advancements are pollution and exponentially growing energy consumption.Pollution continues to be a menace affecting different aspects of life such as health,productivity,and comfort.This paper focuses on the elimination or reduction of sound pollution in buildings using cement-based boards made from pretreated coconut coir and oil palm fibers obtained from agricultural residues.The study includes an account of the preparation of fiber cement boards made from Portland cement Type 1,limestone powder,water,sand,and pretreated coconut coir and oil palm fibers at 5,10,15,and 20%by weight of powder materials,respectively,and a high-range water reducer in order to make sure that the natural materials would be spread in an even way throughout the specimens.Sound insulation tests were performed as key indicators of the performance of the fiber cement boards.It was found that an increase in the proportion of natural materials resulted in fiber cement boards with decreased density,compressive strength,and flexural strength.Furthermore,in relation to both physical and mechanical performance,the boards incorporating coconut fibers were superior to those incorporating oil palm fibers.With an increased proportion of natural fibers,sound insulation performance tended to improve.The boards prepared with coconut coir and oil palm fibers in this study yielded acceptable physical and mechanical properties and showed promise in relation to providing insulative protection against sound.展开更多
4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofura...4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofuran (THF), and then they were identified by IR spectroscopy. The maximum oil-absorptivity of gel-PBED produced from the optinum reaction conditions was 8 420% but its swelling rate was very low. The highest oil-absorptivity of photocrosslinked sol-PBED film was 5 800%. Although its oil absorbency was not as high as gel-PBED' s, swelling rate was higher than that of gelPBED and was suitable for commercial purpose. After swelling in oil, neither gel PBED nor photocrosslinked sol-PBED film having high oil-absorptivity had sufficient mechanical strength to be taken out of oil wholly. As is known, composite technique is one of the useful methods for reinforcing them. Fibers, sponges and non-woven cloths were used as reinforcers or supporters in this work. Oil-absorptivities and swelling kinetics were evaluated by method ASTM (F726 - 81 ) and an experimental equation. The mechanical properties and the morphologies of some composites were measured by tensile tester and SEM , respectively.展开更多
Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bun...Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bunch of oil palm (EFB) is one of the solid waste (biomass) which is generated at the palm oil mill. Its amount is equivalent to the CPO production, but only about 50% of its weight are good fibers for further usage as industrial raw material. The EFB fiber consists an interesting honey comb/lightweight structure. By mixing the EFB natural fiber with bio binding agent based on potato the environmental friendly materials (biocomposites) can be produced which are 100% biodegadrable. The biocomposites with 2 mm thickness have strengthness about 7 GPa according to the 3 points bending test standard of DIN 53 457. After coating process the environmental friendly lightweight materials with density less than 0.4 g/cm3 will be ready to be implemented for different technical applications.展开更多
Brittle fracture of cement sheath, induced by perforation and stimulation treatments, can cause cross flow of formation fluid and increase casing damage. A novel agent XL was developed for solving the problem. Experim...Brittle fracture of cement sheath, induced by perforation and stimulation treatments, can cause cross flow of formation fluid and increase casing damage. A novel agent XL was developed for solving the problem. Experimental results showed that the toughness of the set cement containing XL was improved remarkably. The engineering properties of the slurry containing XL, drag reducer USZ (0.2% BWOC), filtrate loss additive F 17B (1.2% BWOC) and crystalloid expanding agent F17A (3% BWOC) could meet technical requirements of cementing operation. After perforation, good quality cement sheath enhanced with XL was observed by CBL/VDL logs in a deep well.展开更多
变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度...变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度与应变信号,经快速解耦与自适应噪声完备集合经验模态分解后(Fast decoupling and complete ensemble empirical mode decomposition with adaptive noise,DECE),提取关键参数并进行主元分析(Principal component analysis,PCA)。对降维后的特征采用基于黑洞优化的支持向量机(Support vector machine based on black hole optimization,BHOSVM)进行分类,实现对变压器绕组径向松动状态的监测与定位。诊断结果表明,所提诊断方法对变压器绕组径向松动状态的识别准确率达到96.8%。展开更多
文摘The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production.
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.
基金supported by the National Basic Research Program (973) of China(No.2004CB418504)
文摘Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700℃ within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.
文摘Among the major challenges facing the modern era of technological and industrial advancements are pollution and exponentially growing energy consumption.Pollution continues to be a menace affecting different aspects of life such as health,productivity,and comfort.This paper focuses on the elimination or reduction of sound pollution in buildings using cement-based boards made from pretreated coconut coir and oil palm fibers obtained from agricultural residues.The study includes an account of the preparation of fiber cement boards made from Portland cement Type 1,limestone powder,water,sand,and pretreated coconut coir and oil palm fibers at 5,10,15,and 20%by weight of powder materials,respectively,and a high-range water reducer in order to make sure that the natural materials would be spread in an even way throughout the specimens.Sound insulation tests were performed as key indicators of the performance of the fiber cement boards.It was found that an increase in the proportion of natural materials resulted in fiber cement boards with decreased density,compressive strength,and flexural strength.Furthermore,in relation to both physical and mechanical performance,the boards incorporating coconut fibers were superior to those incorporating oil palm fibers.With an increased proportion of natural fibers,sound insulation performance tended to improve.The boards prepared with coconut coir and oil palm fibers in this study yielded acceptable physical and mechanical properties and showed promise in relation to providing insulative protection against sound.
文摘4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofuran (THF), and then they were identified by IR spectroscopy. The maximum oil-absorptivity of gel-PBED produced from the optinum reaction conditions was 8 420% but its swelling rate was very low. The highest oil-absorptivity of photocrosslinked sol-PBED film was 5 800%. Although its oil absorbency was not as high as gel-PBED' s, swelling rate was higher than that of gelPBED and was suitable for commercial purpose. After swelling in oil, neither gel PBED nor photocrosslinked sol-PBED film having high oil-absorptivity had sufficient mechanical strength to be taken out of oil wholly. As is known, composite technique is one of the useful methods for reinforcing them. Fibers, sponges and non-woven cloths were used as reinforcers or supporters in this work. Oil-absorptivities and swelling kinetics were evaluated by method ASTM (F726 - 81 ) and an experimental equation. The mechanical properties and the morphologies of some composites were measured by tensile tester and SEM , respectively.
文摘Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bunch of oil palm (EFB) is one of the solid waste (biomass) which is generated at the palm oil mill. Its amount is equivalent to the CPO production, but only about 50% of its weight are good fibers for further usage as industrial raw material. The EFB fiber consists an interesting honey comb/lightweight structure. By mixing the EFB natural fiber with bio binding agent based on potato the environmental friendly materials (biocomposites) can be produced which are 100% biodegadrable. The biocomposites with 2 mm thickness have strengthness about 7 GPa according to the 3 points bending test standard of DIN 53 457. After coating process the environmental friendly lightweight materials with density less than 0.4 g/cm3 will be ready to be implemented for different technical applications.
文摘Brittle fracture of cement sheath, induced by perforation and stimulation treatments, can cause cross flow of formation fluid and increase casing damage. A novel agent XL was developed for solving the problem. Experimental results showed that the toughness of the set cement containing XL was improved remarkably. The engineering properties of the slurry containing XL, drag reducer USZ (0.2% BWOC), filtrate loss additive F 17B (1.2% BWOC) and crystalloid expanding agent F17A (3% BWOC) could meet technical requirements of cementing operation. After perforation, good quality cement sheath enhanced with XL was observed by CBL/VDL logs in a deep well.
文摘变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度与应变信号,经快速解耦与自适应噪声完备集合经验模态分解后(Fast decoupling and complete ensemble empirical mode decomposition with adaptive noise,DECE),提取关键参数并进行主元分析(Principal component analysis,PCA)。对降维后的特征采用基于黑洞优化的支持向量机(Support vector machine based on black hole optimization,BHOSVM)进行分类,实现对变压器绕组径向松动状态的监测与定位。诊断结果表明,所提诊断方法对变压器绕组径向松动状态的识别准确率达到96.8%。