This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×...受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.展开更多
We propose to generate a sub-nanometer-confined optical field in a nanoslit waveguiding mode in a coupled nanowire pair(CNP).We show that,when a conventional waveguide mode with a proper polarization is evanescently c...We propose to generate a sub-nanometer-confined optical field in a nanoslit waveguiding mode in a coupled nanowire pair(CNP).We show that,when a conventional waveguide mode with a proper polarization is evanescently coupled into a properly designed CNP with a central nanoslit,it can be efficiently channeled into a high-purity nanoslit mode within a waveguiding length<10μm.The CNP can be either freestanding or on-chip by using a tapered fiber or planar waveguide for input-coupling,with a coupling efficiency up to 95%.Within the slit region,the output diffraction-limited nanoslit mode offers an extremely confined optical field(∼0.3 nm×3.3 nm)with a peak-to-background ratio higher than 25 dB and can be operated within a 200-nm bandwidth.The group velocity dispersion of the nanoslit mode for ultrafast pulsed operation is also briefly investigated.Compared with the previous lasing configuration,the waveguiding scheme demonstrated here is not only simple and straightforward in structural design but is also much flexible and versatile in operation.Therefore,the waveguiding scheme we show here may offer an efficient and flexible platform for exploring light–matter interactions beyond the nanometer scale,and developing optical technologies ranging from superresolution nanoscopy and atom/molecule manipulation to ultra-sensitivity detection.展开更多
We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75%coupling efficiency(CE) between single-mode fiber and silicon-on-insulator(SOI) waveguide thro...We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75%coupling efficiency(CE) between single-mode fiber and silicon-on-insulator(SOI) waveguide through 2D finite-different time-domain(FDTD) simulation.The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay.The structure,including grating couplers,adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography(ICP) step,which is CMOS-compatible.A relatively high coupling efficiency of 47.2%was obtained at a wavelength of 1562 nm.展开更多
Based on a submicrometer-sized SiGe-SOI waveguide, the coupling loss mechanism is analyzed between the submicrometer-sized SiGe-SOI waveguide and the fiber. The main sources of coupling loss are analyzed, and the mism...Based on a submicrometer-sized SiGe-SOI waveguide, the coupling loss mechanism is analyzed between the submicrometer-sized SiGe-SOI waveguide and the fiber. The main sources of coupling loss are analyzed, and the mismatch loss of the mode field is the mainly lost during connection between the submicrometer-sized waveguide and the fiber. In order to reduce the mismatch loss of the mode field, the structure ofa nanotaper SiGeSOI waveguide with a nanometer-sized tip is adopted. By reducing the waveguide dimensions to increase the mode field size, coupling loss could be reduced between the waveguide and the fiber. Different mode field dimensions ofnanotaper SiGe-SOI waveguides and fiber are quantitatively analyzed, and the quantitative relationship between nanotaper SiGe-SOI waveguide dimensions and mode field dimensions are obtained. Finally, nanotaper SiGe-SOI waveguides are made, and the test and analysis have been done. The final experimental results accord well with the theoretical analysis. When the waveguide width is 0.5 μm, the minimum coupling loss of the SiGe-SOI waveguide is 0.56 dB/facet, and also the correctness of the design method and theoretical analysis are verified.展开更多
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.
文摘受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.
基金This work was sup-ported by the National Key Research and Development Program of China(2018YFB2200404)the New Cornerstone Science Foundation,the National Natural Science Foundation of China(92150302 and 62175213)+1 种基金the Natural Science Foundation of Zhejiang Province(LR21F050002)the Fundamental Research Funds for the Central Universities.
文摘We propose to generate a sub-nanometer-confined optical field in a nanoslit waveguiding mode in a coupled nanowire pair(CNP).We show that,when a conventional waveguide mode with a proper polarization is evanescently coupled into a properly designed CNP with a central nanoslit,it can be efficiently channeled into a high-purity nanoslit mode within a waveguiding length<10μm.The CNP can be either freestanding or on-chip by using a tapered fiber or planar waveguide for input-coupling,with a coupling efficiency up to 95%.Within the slit region,the output diffraction-limited nanoslit mode offers an extremely confined optical field(∼0.3 nm×3.3 nm)with a peak-to-background ratio higher than 25 dB and can be operated within a 200-nm bandwidth.The group velocity dispersion of the nanoslit mode for ultrafast pulsed operation is also briefly investigated.Compared with the previous lasing configuration,the waveguiding scheme demonstrated here is not only simple and straightforward in structural design but is also much flexible and versatile in operation.Therefore,the waveguiding scheme we show here may offer an efficient and flexible platform for exploring light–matter interactions beyond the nanometer scale,and developing optical technologies ranging from superresolution nanoscopy and atom/molecule manipulation to ultra-sensitivity detection.
基金Project supported by the National Key Research and Development Program of China(No.2016YFB0402404)the High-Tech Research and Development Program of China(Nos.2013AA031401,2015AA016902,2015AA016904)the National Natural Foundation of China(Nos.61674136,61435002,61176053,61274069)
文摘We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75%coupling efficiency(CE) between single-mode fiber and silicon-on-insulator(SOI) waveguide through 2D finite-different time-domain(FDTD) simulation.The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay.The structure,including grating couplers,adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography(ICP) step,which is CMOS-compatible.A relatively high coupling efficiency of 47.2%was obtained at a wavelength of 1562 nm.
基金supported by the National Natural Science Foundation of China(No.61204080)the Natural Science Foundation of Shaanxi Province(No.2012JM1011)+2 种基金the Shaanxi Provincial Education Department(No.2013JK1111)the Doctoral Program Foundation of Xi’an Polytechnic University of China(No.BS1128)the Shaanxi Province Ordinary University Key Disciplines Construction Projects of Special Funds(No.(2008)169)
文摘Based on a submicrometer-sized SiGe-SOI waveguide, the coupling loss mechanism is analyzed between the submicrometer-sized SiGe-SOI waveguide and the fiber. The main sources of coupling loss are analyzed, and the mismatch loss of the mode field is the mainly lost during connection between the submicrometer-sized waveguide and the fiber. In order to reduce the mismatch loss of the mode field, the structure ofa nanotaper SiGeSOI waveguide with a nanometer-sized tip is adopted. By reducing the waveguide dimensions to increase the mode field size, coupling loss could be reduced between the waveguide and the fiber. Different mode field dimensions ofnanotaper SiGe-SOI waveguides and fiber are quantitatively analyzed, and the quantitative relationship between nanotaper SiGe-SOI waveguide dimensions and mode field dimensions are obtained. Finally, nanotaper SiGe-SOI waveguides are made, and the test and analysis have been done. The final experimental results accord well with the theoretical analysis. When the waveguide width is 0.5 μm, the minimum coupling loss of the SiGe-SOI waveguide is 0.56 dB/facet, and also the correctness of the design method and theoretical analysis are verified.