Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whol...Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in parallel confocal detecting. Conclusion The equipment needn't mechanical rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.展开更多
A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N^2 subbeams to realize the whole-field ins...A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N^2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.展开更多
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc...This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.展开更多
It is important for the fuel cell integrated movable system to operate voltage and current using safety control technology. In order to work at the convenient condition of the fuel cell system, high performance fuel c...It is important for the fuel cell integrated movable system to operate voltage and current using safety control technology. In order to work at the convenient condition of the fuel cell system, high performance fuel cell stack with replaceable fiber bipolar plate should be arranged with the integrated subsystem and appropriate working process. The parameters which affect the performance of PEMFC consisting of relative humidity, reaction temperature, gas inlet temperature, gas inlet pressure, and hydrogen and air flow rate. This study is to develop the integrated movable system on distributed power generation and backup power application, such as oxidant supply system, fuel supply system, heat management system, water management system, and power conditioning system. It comprises a novel PLC (Programmable Logic Control) system and human-machine interface. The controller is developed to control fuel cell system and record the operation data by using data acquisition system. The controller can be applied to high performance stack and system to obtain the best performance. The easy-taken high capacity hydrogen barrel embedded into steel plate of this movable system and more convenient than other fuel cell system.展开更多
1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the...1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.展开更多
The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating wer...The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.展开更多
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ...Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.展开更多
文摘Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in parallel confocal detecting. Conclusion The equipment needn't mechanical rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.
文摘A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N^2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.
文摘This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.
文摘It is important for the fuel cell integrated movable system to operate voltage and current using safety control technology. In order to work at the convenient condition of the fuel cell system, high performance fuel cell stack with replaceable fiber bipolar plate should be arranged with the integrated subsystem and appropriate working process. The parameters which affect the performance of PEMFC consisting of relative humidity, reaction temperature, gas inlet temperature, gas inlet pressure, and hydrogen and air flow rate. This study is to develop the integrated movable system on distributed power generation and backup power application, such as oxidant supply system, fuel supply system, heat management system, water management system, and power conditioning system. It comprises a novel PLC (Programmable Logic Control) system and human-machine interface. The controller is developed to control fuel cell system and record the operation data by using data acquisition system. The controller can be applied to high performance stack and system to obtain the best performance. The easy-taken high capacity hydrogen barrel embedded into steel plate of this movable system and more convenient than other fuel cell system.
文摘1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.
文摘The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.
文摘Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.