This study aimed to evaluate the influence of quartz fiber post placement on the fracture resistance of endodontically treated premolars with different dental defects under dynamic loading.Fifty extracted single-roote...This study aimed to evaluate the influence of quartz fiber post placement on the fracture resistance of endodontically treated premolars with different dental defects under dynamic loading.Fifty extracted single-rooted mandibular premolars were randomized into five groups.Each group was prepared according to numbers of residual walls ranged from 0 to 4.Then each group was divided into two subgroups with one restored with quartz fiber posts and the other without posts.In no-post groups,gutta percha point 2 mm below cemento-enamel junction was removed.Composite resin was adapted to the well and used to shape the core directly.Each tooth was restored with a complete metal crown.Dynamic loading was carried out in a masticatory simulator with a nominal load of 50 N at 2 Hz for 300 000 loading cycles.Then a quasi-statically load was applied in a universal testing machine 306 to the long axis with a crosshead speed of 1 mm?min21until fracture.Data were analyzed with one-way analysis of variance and pairwise comparison(P,0.05).No specimens failed during dynamic loading.The fracture resistance enhanced with the increase of numbers of coronal walls and the differences were significant(P,0.05).Placement of fiber posts had a significant effect when fewer than two walls remained(P,0.05),but it had no significant influence in groups with two,three or four walls(P.0.05).Fiber post did not change failure mode,and the fracture pattern was mainly favorable.More dentin walls need to be retained in clinic.When no less than two walls remained,a fiber post is not always necessary.展开更多
Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-...Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.展开更多
Objective:To observe and analyze the clinical effect of prefabricated fiber posts and plastic fiber posts in oral repair.Methods:A total of 128 patients admitted to our hospital from January 2023 to June 2024 underwen...Objective:To observe and analyze the clinical effect of prefabricated fiber posts and plastic fiber posts in oral repair.Methods:A total of 128 patients admitted to our hospital from January 2023 to June 2024 underwent oral prosthesis treatment,of which the control group(n=64)was treated with prefabricated fiber posts and the observation group(n=64)with plastic fiber posts.The efficacy,retention rate,and complication rate of the two groups were compared.Results:The total effective rate of the observation group was 96.88%,which was significantly higher than that of the control group(84.38%)(P<0.05).The restoration retention rate in the observation group was 95.31%,which was significantly higher than that in the control group(85.94%)(P<0.05).The incidence of postoperative complications in the observation group was 4.69%,which was significantly lower than that in the control group(15.63%)(P<0.05).Conclusion:For patients with oral prostheses,the use of plastic fiber posts for treatment shows better clinical effects,effectively improving the retention rate of the prosthesis and reducing the incidence of complications.Thus,it is worthy of popularization and application.展开更多
The aim of this study is to investigate the influence of different posts on the fracture mechanics of endodontically-treated teeth with open apex. Forty-eight human maxillary anterior teeth were collected, and the roo...The aim of this study is to investigate the influence of different posts on the fracture mechanics of endodontically-treated teeth with open apex. Forty-eight human maxillary anterior teeth were collected, and the root was transversely sectioned 12 mm under the cementoenamal junction (CEJ). These samples were then randomly divided into two groups, i.e., minor diameter open apex root (group A) and major diameter open apex root (group B), with mineral trioxide aggregate (MTA) placed into the apical 4 mm in the root canals. Subsequently, both groups were respectively further divided into three subgroups as follows: fiber-post (subgroup 1), metal post (subgroup 2) and non-post (subgroup 3) group. Teeth were restored with a composite resin crown and tested by using a universal testing machine at the rate of 1 mm/min cross-head. Values of the maximum fracture resistance and failure patterns were recorded and compared among all subgroups. In addition, the changes of MTA properties were carefully examined via X-ray photography. Our results indicate that (1) In group A, the mean value of fracture resistance for teeth restored with fiber posts were statistically higher than that with either metal post or non-post; (2) In group B, there was no statistically significant difference in the mean value of fracture resistance among three subgroups; (3) No statistical significance in the mean value of fracture resistance was found between group A and group B; (4) The failure modes of most samples (58%) were irreparable; (5) MTA in two teeth developed cracks after loading tests. In conclusion, endodontically-treated teeth restored with fiber posts are more resistant to fracture than those restored with either metal posts or non-post, and most of the fracture modes are catastrophic in nature.展开更多
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo...Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.展开更多
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr...Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.展开更多
In this paper, a 10 GHz radio over fiber system is analyzed. The Brillouin fiber-optic ring laser is used in the center station (CS) to suppress the optical carrier for the modulation depth enhancement. Simultaneous...In this paper, a 10 GHz radio over fiber system is analyzed. The Brillouin fiber-optic ring laser is used in the center station (CS) to suppress the optical carrier for the modulation depth enhancement. Simultaneously, the Stockes wave induced by the Brillouin amplification injects and locks the Fabry-Perot (FP) laser to output a signal-mode optical source, which works as the uplink optical carrier.展开更多
Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compare...Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stre...Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model.展开更多
文摘This study aimed to evaluate the influence of quartz fiber post placement on the fracture resistance of endodontically treated premolars with different dental defects under dynamic loading.Fifty extracted single-rooted mandibular premolars were randomized into five groups.Each group was prepared according to numbers of residual walls ranged from 0 to 4.Then each group was divided into two subgroups with one restored with quartz fiber posts and the other without posts.In no-post groups,gutta percha point 2 mm below cemento-enamel junction was removed.Composite resin was adapted to the well and used to shape the core directly.Each tooth was restored with a complete metal crown.Dynamic loading was carried out in a masticatory simulator with a nominal load of 50 N at 2 Hz for 300 000 loading cycles.Then a quasi-statically load was applied in a universal testing machine 306 to the long axis with a crosshead speed of 1 mm?min21until fracture.Data were analyzed with one-way analysis of variance and pairwise comparison(P,0.05).No specimens failed during dynamic loading.The fracture resistance enhanced with the increase of numbers of coronal walls and the differences were significant(P,0.05).Placement of fiber posts had a significant effect when fewer than two walls remained(P,0.05),but it had no significant influence in groups with two,three or four walls(P.0.05).Fiber post did not change failure mode,and the fracture pattern was mainly favorable.More dentin walls need to be retained in clinic.When no less than two walls remained,a fiber post is not always necessary.
文摘Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.
文摘Objective:To observe and analyze the clinical effect of prefabricated fiber posts and plastic fiber posts in oral repair.Methods:A total of 128 patients admitted to our hospital from January 2023 to June 2024 underwent oral prosthesis treatment,of which the control group(n=64)was treated with prefabricated fiber posts and the observation group(n=64)with plastic fiber posts.The efficacy,retention rate,and complication rate of the two groups were compared.Results:The total effective rate of the observation group was 96.88%,which was significantly higher than that of the control group(84.38%)(P<0.05).The restoration retention rate in the observation group was 95.31%,which was significantly higher than that in the control group(85.94%)(P<0.05).The incidence of postoperative complications in the observation group was 4.69%,which was significantly lower than that in the control group(15.63%)(P<0.05).Conclusion:For patients with oral prostheses,the use of plastic fiber posts for treatment shows better clinical effects,effectively improving the retention rate of the prosthesis and reducing the incidence of complications.Thus,it is worthy of popularization and application.
基金supported by a grant from a program of research and development of Hubei Province (No. 2008-BCC 001)
文摘The aim of this study is to investigate the influence of different posts on the fracture mechanics of endodontically-treated teeth with open apex. Forty-eight human maxillary anterior teeth were collected, and the root was transversely sectioned 12 mm under the cementoenamal junction (CEJ). These samples were then randomly divided into two groups, i.e., minor diameter open apex root (group A) and major diameter open apex root (group B), with mineral trioxide aggregate (MTA) placed into the apical 4 mm in the root canals. Subsequently, both groups were respectively further divided into three subgroups as follows: fiber-post (subgroup 1), metal post (subgroup 2) and non-post (subgroup 3) group. Teeth were restored with a composite resin crown and tested by using a universal testing machine at the rate of 1 mm/min cross-head. Values of the maximum fracture resistance and failure patterns were recorded and compared among all subgroups. In addition, the changes of MTA properties were carefully examined via X-ray photography. Our results indicate that (1) In group A, the mean value of fracture resistance for teeth restored with fiber posts were statistically higher than that with either metal post or non-post; (2) In group B, there was no statistically significant difference in the mean value of fracture resistance among three subgroups; (3) No statistical significance in the mean value of fracture resistance was found between group A and group B; (4) The failure modes of most samples (58%) were irreparable; (5) MTA in two teeth developed cracks after loading tests. In conclusion, endodontically-treated teeth restored with fiber posts are more resistant to fracture than those restored with either metal posts or non-post, and most of the fracture modes are catastrophic in nature.
基金National Science Foundation,Grant number CMS-9900338
文摘Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.
文摘Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60377024, 60877053)the Science Foundation of Science and Technology Commission of Shanghai Municipality (Grant No.08DZ1500115)
文摘In this paper, a 10 GHz radio over fiber system is analyzed. The Brillouin fiber-optic ring laser is used in the center station (CS) to suppress the optical carrier for the modulation depth enhancement. Simultaneously, the Stockes wave induced by the Brillouin amplification injects and locks the Fabry-Perot (FP) laser to output a signal-mode optical source, which works as the uplink optical carrier.
文摘Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
文摘Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model.