期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Ballistic impact simulation of Kevlar-129 fiber reinforced composite material 被引量:1
1
作者 张明 原梅妮 +1 位作者 向丰华 王振兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期286-290,共5页
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el... The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment. 展开更多
关键词 ballistic limit finite element specific energy absorption Kevlar fiber reinforced composite material
下载PDF
AN EXPERIMENTAL STUDY ON POST-BUCKLING BEHAVIOR OF SLENDER COLUMN WITH FIBER REINFORCED COMPOSITE MATERIAL 被引量:1
2
作者 Fan Qinshan LHYam +1 位作者 Chen Wen Chen Zhengxin 《Acta Mechanica Solida Sinica》 SCIE EI 1996年第2期184-188,共5页
Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compare... Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range. 展开更多
关键词 POST-BUCKLING initial curvature fiber reinforced composite materials large deflection
下载PDF
Effect of Loading Frequency on the High Cycle Fatigue Strength of Flax Fiber Reinforced Polymer Matrix Composites
3
作者 Md Zahirul Islam Chad A.Ulven 《Journal of Renewable Materials》 SCIE EI 2022年第5期1185-1200,共16页
Among natural fibers,flax fiber reinforced polymer matrix composites show excellent dynamic/fatigue properties due to its excellent damping properties.Knowledge about fatigue limit and effect of loading frequency on f... Among natural fibers,flax fiber reinforced polymer matrix composites show excellent dynamic/fatigue properties due to its excellent damping properties.Knowledge about fatigue limit and effect of loading frequency on fatigue limit is very crucial to know before being used a member as a structural component.Fatigue limit of fiber reinforced composite is measured through high cycle fatigue strength(HCFS).The effect of loading frequency on the HCFS of flax fiber reinforced polymer matrix composites was investigated using stabilized specimen surface temperature based thermographic and dissipated energy per cycle-based approaches.Specimens of unidirectional flax fiber reinforced thermoset composites were tested under cyclic loading at different percentages of applied stresses for the loading frequencies of 5,7,10,and 15 Hz in order to determine the stabilized surface temperature of the specimen and dissipated energy per fatigue cycle.Both approaches predicted similar fatigue limits(HCFS)which showed a good agreement with experimental results from Literature.HCFS of flax fiber reinforced composites decrease little with increasing loading frequency.Furthermore,effect of loading frequency on stabilized specimen temperature and dissipated energy per fatigue cycle was also investigated.Although specimen surface temperature increases with loading frequency,dissipated energy per-cycle does not change with loading frequency.Thermal degradation at higher loading frequencies may play a significant role in decreasing HCFS with increasing loading frequency. 展开更多
关键词 fiber reinforced material fatigue limit fatigue modelling loading frequency life prediction
下载PDF
Study on mechanical properties of composite materials by in-situ tensile test
4
作者 黄海波 李凡 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期49-52,共4页
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p... The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface. 展开更多
关键词 Cracks fiber reinforced materials Interfaces (materials) Mechanical properties MICROSTRUCTURE Scanning electron microscopy Silicon carbide Tensile testing
下载PDF
Thermal Characteristics of Earth Blocks Stabilized by Rice Husks
5
作者 Mbairangone Samson Ntamack Guy Edgar +2 位作者 Bianzeube Tikri Tsopmo Fabien Akana Ouanmini Bobet 《Open Journal of Applied Sciences》 2023年第10期1796-1819,共24页
The objective of this study is to determine the thermal characteristics of bricks produced from clay soils in Chad using the asymmetric plane method. Indeed, in Sahelian countries like Chad, temperature variations are... The objective of this study is to determine the thermal characteristics of bricks produced from clay soils in Chad using the asymmetric plane method. Indeed, in Sahelian countries like Chad, temperature variations are excessive. The study of the thermal behavior of a recyclable local material with low environmental impact could not only improve thermal comfort in homes, but also help mitigate the effects of climate change. It is in this context that this study is envisaged. Before carrying out these measurements, we first produced different formulations of soil blocks 0%, 1% 1.5%, 2% and 2.5% by mass of rice husks (1.25 mm sieve refusal). Brick specimens of dimensions 10 cm × 10 cm × 1 cm were developed at 0 day, 7 days and 14 days of maturation of the formulated pastes. After, those bricks were submitted after drying to the measurements of various thermal parameters: in particular the conductivity, the effusivity, the volumetric capacity and the diffusivity. The obtained results show that the addition of rice husks to clay soils improves conductivity by 13% to 49%, effusivity by 19% to 24%, volumetric capacity by 23% to 27%, and diffusivity by 47% to 58% for the Moundou soils, depending on the maturation period. For the N’Djamena soil, these thermal characteristics are improved from 11% to 38%, from 11% to 13%, from 40% to 47% and from 39% to 40% respectively. 展开更多
关键词 Thermal Conductivity BRICKS MIXTURES fiber reinforced Material Thermal Confort
下载PDF
Estimation of Transverse Thermal Conductivity of Doubly-periodic Fiber Reinforced Composites 被引量:5
6
作者 Yan Peng Jiang Chiping +1 位作者 Song Fan Xu Xianghong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第1期54-60,共7页
For steady-state heat conduction,a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodi... For steady-state heat conduction,a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM)based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented, which is convenient for engineering application. The numerical results show a good convergency of the presented method,even though the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array. 展开更多
关键词 effective thermal conductivity unit cell model eigenfunetion expansion variational techniques double period fiber reinforced materials
原文传递
Research on the Crack Detection of Conductive Components Using Pulsed Eddy Current Thermography 被引量:8
7
作者 ZHOU Deqiang CHANG Xiang +3 位作者 DU Yang CAO Piyu WANG Hua ZHANG Hong 《Instrumentation》 2017年第3期59-68,共10页
Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different mater... Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is. 展开更多
关键词 Pulsed Eddy Current Thermography Finite Element Analysis Carbon fiber reinforced Composite Material Metal Material
下载PDF
Damage detection method in complicated beams with varying flexural stiffness
8
作者 冯侃 励争 +1 位作者 高桂云 苏先樾 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期469-478,共10页
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying... A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications. 展开更多
关键词 nondestructive testing modal strain energy varying flexural stiffness beam fiber reinforced composite material wind turbine blade
下载PDF
COUPLING EFFECTS OF VOID SHAPE AND VOID SIZE ON THE GROWTH OF AN ELLIPTIC VOID IN A FIBER-REINFORCED HYPER-ELASTIC THIN PLATE
9
作者 Jiusheng Ren Hanhai Li +1 位作者 Changjun Cheng Xuegang Yuan 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第3期312-320,共9页
The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite el... The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite elasticity. Coupling effects of void shape and void size on the growth of the void are paid special attention to. The deformation function of the plate with an isolated elliptic void is given, which is expressed by two parameters to solve the differential equation. The solution is approximately obtained from the minimum potential energy principle. Deformation curves for the void with a wide range of void aspect ratios and the stress distributions on the surface of the void have been obtained by numerical computation. The growth behavior of the void and the characteristics of stress distributions on the surface of the void are captured. The combined effects of void size and void shape on the growth of the void in the thin plate are discussed. The maximum stresses for the void with different sizes and different void aspect ratios are compared. 展开更多
关键词 fiber reinforced hyper-elastic material rectangular thin plate with void void shapeand void size potential energy principle growth of void
原文传递
The impact of the new composite material technology on the performance of the tennis rackets
10
《International English Education Research》 2013年第12期53-55,共3页
With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also req... With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also requires that the sports experts should not only strive for the scientific training, but should also pay much attention on the improvement and development of the sports equipment at the same time, which makes the sports equipment market have achieved unprecedented prosperity. This paper introduces the application of the fiber reinforced composite materials in the field of sports equipment, which is described mainly from the advantages of the fiber reinforced composite materials used in sports equipment areas, and from the aspects of the principles of material selection, the product varieties, the application examples and the status. 展开更多
关键词 New composite materials tennis rackets glass fiber reinforced composite materials carbon fiber reinforced composite materials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部