We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin f...We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it i...We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into...We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power.展开更多
A Q-switched erbium-doped fiber laser(EDFL)incorporating zinc-oxide(ZnO)nanoparticles-based saturable absorber(SA)is proposed and demonstrated.To form the SA,the ZnO nanoparticles,which are originally in the powder fo...A Q-switched erbium-doped fiber laser(EDFL)incorporating zinc-oxide(ZnO)nanoparticles-based saturable absorber(SA)is proposed and demonstrated.To form the SA,the ZnO nanoparticles,which are originally in the powder form,are first dissolved in ethanol and subsequently deposited onto the surface of fiber ferrule by using the adhesion effect with the evaporation technique.By integrating the ZnO nanoparticle-based SA into a laser cavity of an EDFL,a self-started and stable Q-switching is achieved at a low threshold power of 20.24 mW.As the pump power is increased,the pulse repetition rate is tunable from 10.34 kHz to 25.59 kHz while pulse duration decreases from 21.39μs to 3.65μs.Additionally,this Q-switched laser has a maximum energy per pulse of 19.34 nJ and an average output power of 0.46 mW.These results indicate the feasibility and functionality of the ZnO nanoparticles-based SA for Q-switched generation,which offers the flexibility and easy integration of the SA into a ring laser cavity.展开更多
We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at t...We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at the wavelength of 1531.6 nm with the duration of 816 fs and centered at the wavelength of 1557.8 nm with the duration of 402 fs are separately obtained from the same fiber laser cavity. The cavity loss adjusted by the gold reflector plays a crucial role in wavelength switching.展开更多
We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.Th...We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device,with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively.These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient,compatible,and low-cost SA device for ultrafast laser applications.展开更多
We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber to...We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields.展开更多
Self-starting Q-switching,Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time.The ...Self-starting Q-switching,Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time.The central wavelengths of Q-switching,Q-switched mode-locking and mode-locking operation modes are 1569.7 nm,1570.9 nm,and 1572 nm,respectively.The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB.The results validate the capability of generating soliton pulse by doped fiber saturable absorber.Furthermore,the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.展开更多
We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a t...We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.展开更多
A mode-locked thulium ytterbium co-doped fiber laser (TYDFL) is proposed and demonstrated by using a commercial graphene oxide (GO) paper as saturable absorber (SA). The GO paper is sandwiched between two fiber ...A mode-locked thulium ytterbium co-doped fiber laser (TYDFL) is proposed and demonstrated by using a commercial graphene oxide (GO) paper as saturable absorber (SA). The GO paper is sandwiched between two fiber ferrules and incorporates a ring laser cavity to generate soliton pulse train operating at 1942.0nm at a threshold multimode pump power as low as 1.8 W. The mode-locked TYDFL has a repetition rate of 22.32 MHz and the calculated pulse width of 1.1 ns. Even though the SA has a low damage threshold, the easy fabrication of GO paper should promote its potentiM application in ultrafast photonics.展开更多
A two-dimensional silver nanoplate is prepared with the seed-mediated growth method and is used for achieving pulse fiber laser operation. By controlling the dimension parameters of the silver nanoplate, the surface p...A two-dimensional silver nanoplate is prepared with the seed-mediated growth method and is used for achieving pulse fiber laser operation. By controlling the dimension parameters of the silver nanoplate, the surface plasmon resonance absorption peak of the material is successfully adjusted to 1068 nm. Based on the silver nanoplate as a saturable absorber, a passively Q-switched Yb-doped fiber laser operating at 1062 nm is demonstrated. The maximum average output power of 3.49mW is obtained with a minimum pulse width of 1.84#s at a pulse repetition rate of 65.TkHz, and the corresponding pulse energy and peak power are 53.1 nJ and 28.8mW, respectively.展开更多
We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedd...We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedding CdSe nanomaterials into a polymethyl methacrylate (PMMA) microfiber. It is incorporated into an EDFL cavity to generate a Q-switched laser operating at 1533.6nm. The repetition rates of the produced pulse train are tunable within 37–64kHz as the pump power is varied from 34mW to 74mW. The corresponding pulse width reduces from 7.96μs to 4.84μs, and the maximum pulse energy of 1.16nJ is obtained at the pump power of 74mW.展开更多
We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-...We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.展开更多
GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><sp...GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span><span style="font-family:Verdana;">phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, respectively. Us</span><span style="font-family:Verdana;">ing the saturated absorption characteristics of GeSe SA, a passively Q-switched </span><span style="font-family:Verdana;">erbium-doped fiber laser was systematically demonstrated. As the pump</span><span style="font-family:Verdana;"> power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 </span><span style="font-family:Verdana;">kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse</span><span style="font-family:Verdana;"> energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.</span></span></span></span>展开更多
<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i&l...<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">nanosheets</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> prepared by means of ultrasound-assisted liquid </span><span style="font-family:Verdana;font-size:12px;">phase exfoliation (LPE)</span><span style="font-family:Verdana;font-size:12px;"> and the </span><span style="font-family:Verdana;font-size:12px;">nonlinear </span><span style="font-family:Verdana;font-size:12px;">saturable absorption</span><span style="font-family:Verdana;font-size:12px;"> properties</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were experimentally</span><span style="font-family:Verdana;font-size:12px;"> investigated. The modulation depth, saturation intensity and nonsaturable absorbance</span><span style="font-family:Verdana;font-size:12px;"> of the prepared </span><span style="font-family:Verdana;font-size:12px;">1T-TiSe</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">SA </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">1</span><span style="font-family:Verdana;font-size:12px;">5.7</span><span style="font-family:Verdana;font-size:12px;">%,</span><span style="font-family:Verdana;font-size:12px;"> 1.28 M</span><span style="font-family:Verdana;font-size:12px;">W/cm</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and 8.</span><span style="font-family:Verdana;font-size:12px;">2</span><span style="font-family:Verdana;font-size:12px;">%, </span><span style="font-family:Verdana;font-size:12px;">respectively</span><span style="font-family:Verdana;font-size:12px;">. Taking advantage of the saturable absorption properties of </span><span style="font-family:Verdana;font-size:12px;">T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;">-based SA, a passively Q-switched erbium-doped fiber (EDF) laser was</span><span style="font-family:Verdana;font-size:12px;"> systematically demonstrated</span><span style="font-family:Verdana;font-size:12px;">. The pulse repetition rates varied from 24.50 kHz up to 73.79 kHz with the increasing pump power. The obtained shortest pulse width was 1.31 </span><span style="font-family:Verdana;font-size:12px;">μ</span><span style="font-family:Verdana;font-size:12px;">s with pulse energy of 79.28 nJ. The </span><span style="font-family:Verdana;font-size:12px;">system presented merits of low-cost SA preparation, system compactness,</span><span style="font-family:Verdana;font-size:12px;"> superb stability and high competition.</span>展开更多
We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating...We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘We report on the generation of conventional and dissipative solitons in erbium-doped fiber lasers by the evanescent field interaction between the propagating light and a multilayer molybdenum disulfide(MoS_2) thin film. The MoS_2 film is fabricated by depositing the MoS_2 water–ethanol mixture on a D-shape-fiber(DF) repetitively. The measured nonsaturable loss, saturable optical intensity, and the modulation depth of this device are 13.3%, 110 MW/cm^2, and 3.4% respectively.Owing to the very low nonsaturable loss, the laser threshold of conventional soliton is as low as 4.8 mW. The further increase of net cavity dispersion to normal regime, stable dissipation soliton pulse trains with a spectral bandwidth of 11.7 nm and pulse duration of 116 ps are successfully generated. Our experiment demonstrates that the MoS_2-DF device can indeed be used as a high performance saturable absorber for further applications in ultrafast photonics.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
文摘We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
基金Supported by the Postgraduate Research of Malaysia under Grant No PG098-2014Bthe CSIR of Government of India
文摘We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power.
基金Project supported by the Science Fund from the Ministry of Higher Education of Malaysia(MOHE)(Grant No.FRGS/1/2016/STG02/UPM/02/5)
文摘A Q-switched erbium-doped fiber laser(EDFL)incorporating zinc-oxide(ZnO)nanoparticles-based saturable absorber(SA)is proposed and demonstrated.To form the SA,the ZnO nanoparticles,which are originally in the powder form,are first dissolved in ethanol and subsequently deposited onto the surface of fiber ferrule by using the adhesion effect with the evaporation technique.By integrating the ZnO nanoparticle-based SA into a laser cavity of an EDFL,a self-started and stable Q-switching is achieved at a low threshold power of 20.24 mW.As the pump power is increased,the pulse repetition rate is tunable from 10.34 kHz to 25.59 kHz while pulse duration decreases from 21.39μs to 3.65μs.Additionally,this Q-switched laser has a maximum energy per pulse of 19.34 nJ and an average output power of 0.46 mW.These results indicate the feasibility and functionality of the ZnO nanoparticles-based SA for Q-switched generation,which offers the flexibility and easy integration of the SA into a ring laser cavity.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.PCSIRT:1212)the Key Grant Science and Technology Planning Project of Beijing,China(Grant Nos.PXM2013 014224 000077 and PXM2012 014224 000019)the Science and Technology Planning Project of Beijing Municipal Commission of Education,China(Grant No.KM201611232008)
文摘We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at the wavelength of 1531.6 nm with the duration of 816 fs and centered at the wavelength of 1557.8 nm with the duration of 402 fs are separately obtained from the same fiber laser cavity. The cavity loss adjusted by the gold reflector plays a crucial role in wavelength switching.
基金the Ministry of Higher Education of Malaysia(MOHE)(Grant No.FRGS/1/2019/STG02/UPM/02/4).
文摘We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device,with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively.These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient,compatible,and low-cost SA device for ultrafast laser applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha,China(Grant No.KQ2206003).
文摘We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields.
基金supported by the Science and Technology Innovation Program of Hunan Province,China(Grant No.2021RC5012).
文摘Self-starting Q-switching,Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time.The central wavelengths of Q-switching,Q-switched mode-locking and mode-locking operation modes are 1569.7 nm,1570.9 nm,and 1572 nm,respectively.The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB.The results validate the capability of generating soliton pulse by doped fiber saturable absorber.Furthermore,the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.
基金support for this work through Grant, HiCoE (PRC-2022)the Universiti Malaya for the funding of this work through Grant Nos. RU005-2021 and MGO23-2022。
文摘We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.
基金Supported by the Ministry of Education and University of Malaya under Grant Nos SF014-2014,PG139-2012 B and PG068-2013B
文摘A mode-locked thulium ytterbium co-doped fiber laser (TYDFL) is proposed and demonstrated by using a commercial graphene oxide (GO) paper as saturable absorber (SA). The GO paper is sandwiched between two fiber ferrules and incorporates a ring laser cavity to generate soliton pulse train operating at 1942.0nm at a threshold multimode pump power as low as 1.8 W. The mode-locked TYDFL has a repetition rate of 22.32 MHz and the calculated pulse width of 1.1 ns. Even though the SA has a low damage threshold, the easy fabrication of GO paper should promote its potentiM application in ultrafast photonics.
基金Supported by the Foundation of Shandong Province under Grant No J13LN28the National Natural Science Foundation of China under Grant No 11304184
文摘A two-dimensional silver nanoplate is prepared with the seed-mediated growth method and is used for achieving pulse fiber laser operation. By controlling the dimension parameters of the silver nanoplate, the surface plasmon resonance absorption peak of the material is successfully adjusted to 1068 nm. Based on the silver nanoplate as a saturable absorber, a passively Q-switched Yb-doped fiber laser operating at 1062 nm is demonstrated. The maximum average output power of 3.49mW is obtained with a minimum pulse width of 1.84#s at a pulse repetition rate of 65.TkHz, and the corresponding pulse energy and peak power are 53.1 nJ and 28.8mW, respectively.
文摘We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedding CdSe nanomaterials into a polymethyl methacrylate (PMMA) microfiber. It is incorporated into an EDFL cavity to generate a Q-switched laser operating at 1533.6nm. The repetition rates of the produced pulse train are tunable within 37–64kHz as the pump power is varied from 34mW to 74mW. The corresponding pulse width reduces from 7.96μs to 4.84μs, and the maximum pulse energy of 1.16nJ is obtained at the pump power of 74mW.
基金Supported by the Iraqi Ministry of Higher Education and Scientific Research and University of Baghdad
文摘We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
文摘GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span><span style="font-family:Verdana;">phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, respectively. Us</span><span style="font-family:Verdana;">ing the saturated absorption characteristics of GeSe SA, a passively Q-switched </span><span style="font-family:Verdana;">erbium-doped fiber laser was systematically demonstrated. As the pump</span><span style="font-family:Verdana;"> power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 </span><span style="font-family:Verdana;">kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse</span><span style="font-family:Verdana;"> energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.</span></span></span></span>
文摘<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">nanosheets</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> prepared by means of ultrasound-assisted liquid </span><span style="font-family:Verdana;font-size:12px;">phase exfoliation (LPE)</span><span style="font-family:Verdana;font-size:12px;"> and the </span><span style="font-family:Verdana;font-size:12px;">nonlinear </span><span style="font-family:Verdana;font-size:12px;">saturable absorption</span><span style="font-family:Verdana;font-size:12px;"> properties</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were experimentally</span><span style="font-family:Verdana;font-size:12px;"> investigated. The modulation depth, saturation intensity and nonsaturable absorbance</span><span style="font-family:Verdana;font-size:12px;"> of the prepared </span><span style="font-family:Verdana;font-size:12px;">1T-TiSe</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">SA </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">1</span><span style="font-family:Verdana;font-size:12px;">5.7</span><span style="font-family:Verdana;font-size:12px;">%,</span><span style="font-family:Verdana;font-size:12px;"> 1.28 M</span><span style="font-family:Verdana;font-size:12px;">W/cm</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and 8.</span><span style="font-family:Verdana;font-size:12px;">2</span><span style="font-family:Verdana;font-size:12px;">%, </span><span style="font-family:Verdana;font-size:12px;">respectively</span><span style="font-family:Verdana;font-size:12px;">. Taking advantage of the saturable absorption properties of </span><span style="font-family:Verdana;font-size:12px;">T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;">-based SA, a passively Q-switched erbium-doped fiber (EDF) laser was</span><span style="font-family:Verdana;font-size:12px;"> systematically demonstrated</span><span style="font-family:Verdana;font-size:12px;">. The pulse repetition rates varied from 24.50 kHz up to 73.79 kHz with the increasing pump power. The obtained shortest pulse width was 1.31 </span><span style="font-family:Verdana;font-size:12px;">μ</span><span style="font-family:Verdana;font-size:12px;">s with pulse energy of 79.28 nJ. The </span><span style="font-family:Verdana;font-size:12px;">system presented merits of low-cost SA preparation, system compactness,</span><span style="font-family:Verdana;font-size:12px;"> superb stability and high competition.</span>
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61077017 and 61378028)the Program for New Century Excellent Talents in University,China (Grant Nos.NCET-11-0069 and NCET-10-0291)the 111 Project (Grant No.B13042)
文摘We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.