This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including...This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.展开更多
An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the...An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the relation between deflection and pressure is analyzed. Both the mechanical model of the mesa structure diaphragm and the signal averaging effect is validated by simulation, which declares that the mesa structure diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.展开更多
Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithog...Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine.In this study,the outer diameter of the core cladding was 250μm,the diameter of the core was 9μm,and the microcavity sensing unit was only 30μm.It could measure ultrasonic signals with high precision.The characteristics of the proposed ultrasonic sensor were investigated,and its feasibility was proven through experiments.Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection.The sensor is applicable to the field of biomedical information technology,including medical diagnosis,photoacoustic endoscopy,and photoacoustic imaging.展开更多
The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sens...Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique,diaphragm-based EFPI sensors,and white light interference technology have been reviewed.Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced.Signal demodulation algorithms based on the cross correlation and mean square error(MSE)estimation have been proposed for retrieving the cavity length of EFPI.Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out.For downhole monitoring,an EFPI and a fiber Bragg grating(FBG)cascade multiplexing fiber-optic sensor system has been developed,which can operate in temperature 300℃with a good long-term stability and extremely low temperature cross-sensitivity.Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection.Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.展开更多
A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the inten...A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the intensity of the output electric field is derived, and the effect of the external magnetic field on the ring-down time is discussed. The results show that the output light intensity and the ring-down time of the FBG-FP cavity are in the inverse proportion to the magnitude of the external magnetic field. Our results demonstrate the new concept of the fiber magnetic sensor with the FBG-FP cavity ring-down spectroscopy and the technical feasibility.展开更多
A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experimen...A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experiments to obtain the dynamic range of the F-P sensor, and a piezoelectric crystal unit (PZT) was used as the driver. The output signal was modulated by a piezoelectric ceramic ring and demodulated by a phase-locked oscillator. The experimental results show that the displacement resolution of the F-P sensor is less than 5 nm and the dynamic range is more than 100 μm. As acceleration is the second-order differential of displacement, an accelerometer model was proposed using the finite element method (FEM) nd ANSYS software.展开更多
This paper reviews a wide variety of fiber-optic microstructure(FOM)sensors,such as fiber Bragg grating(FBG)sensors,long-period fiber grating(LPFG)sensors,Fabry-Perot interferometer(FPI)sensors,Mach-Zchnder interferom...This paper reviews a wide variety of fiber-optic microstructure(FOM)sensors,such as fiber Bragg grating(FBG)sensors,long-period fiber grating(LPFG)sensors,Fabry-Perot interferometer(FPI)sensors,Mach-Zchnder interferometer(MZI)sensors,Michelson interferometer(MI)sensors,and Sagnac interferometer(SI)sensors.Each FOM sensor has been introduced in the terms of structure types,fabrication methods,and their sensing applications.In addition,the sensing characteristics of different structures under the same type of FOM sensor are compared,and the sensing characteristics of the all FOM sensors,including advantages,disadvantages,and main sensing parameters,are summarized.We also discuss the future development of FOM sensors.展开更多
This article reviews author's research work on fiber-optic sensors over the last twenty years. It includes two aspects: low-coherence interferometric sensors (LCI) and fiber Bragg grating (FBG) sensors. For LCI ...This article reviews author's research work on fiber-optic sensors over the last twenty years. It includes two aspects: low-coherence interferometric sensors (LCI) and fiber Bragg grating (FBG) sensors. For LCI sensors, author's work mainly focuses on the interrogation and multiplexing methods for Fizeau and Fabry-Perot interferometric sensors at the University of Kent at Canterbury (UKC), UK, and study on novel Fabry-Perot interferometric sensors and their multiplexing methods at Chongqing University (CQU) and University of Electronic Science & Technology of China (UESTC), China, respectively. For FBG sensors, a number of multiplexing schemes are proposed and demonstrated at UKC, and then novel methods for realization of multi-parameter measurement and long-distance measurement based on the FBG sensor and its combination with other optical fiber sensors are also reported at CQU & UESTC. Thus, author's study on these two topics can be diviaed into two periods, at UKC and at CQU & UESTC, China. This review is presented in such a time sequence.展开更多
The recent progresses of fiber sensor fabrication in our group are reviewed.Novel inline fiber Mach-Zehnder interferometer(MZI) sensors with various structures are proposed and manufactured by femtosecond laser fabric...The recent progresses of fiber sensor fabrication in our group are reviewed.Novel inline fiber Mach-Zehnder interferometer(MZI) sensors with various structures are proposed and manufactured by femtosecond laser fabrication and fusion splicing for high-quality sensing of refractivity-sensitive parameters such as temperature,concentration,humidity,pressure,stress and strain: a) for an MZI sensor with a trench on a single-mode fiber,the refractive index(RI) sensitivity of acetone vapor is about 104 nm/RIU(refractive index unit) and the temperature sensitivity is 51.5 pm/℃ from 200 to 875 ℃;b) For an MZI consisting of two micro-air-cavities,the sensitivity is 501.5 nm/RIU and the detection limit is 1.994×10-6 RIU at the refractive index of 1.4;c) to reduce the fabrication cost,a new fusion-splicing based method is proposed to fabricate MZI sensors;the sensitivity is 664.57 nm/RIU with a detection limit of 1.5×10-6 RIU and its cost is tens of times cheaper than those of commercialized long period fiber Gratings;Also,5×10-5 acetone vapors are successfully detected by the MZI sensors coated with zeolite thin films.展开更多
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity le...A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/℃ to 0.89 pm/℃, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.展开更多
Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot...Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot cavities were fabricated by stepwise assembling the polyelectrolytes onto the ends of optical fibers for the purposes of fiber optical device and sensor development. Ionically assembled polyelectrolyte multilayer thin films, in which. there are hydrophilic side groups with strong affinity towards water molecules, are a category of humidity-sensitive functional materials. The polyelectrolyte multilayer thin film Fabry-Perot cavity-type fiber optical humidity sensor can work over a wide range from about 0% RH to about 100% RH with a response time less than 1 s.展开更多
A probe-shaped sensor for simultaneous temperature and pressure measurement was reported in this article.The effective length of the sensor was〜2 mm,consisting of a fiber Bragg grating(FBG)and a Fabry-Perot interferom...A probe-shaped sensor for simultaneous temperature and pressure measurement was reported in this article.The effective length of the sensor was〜2 mm,consisting of a fiber Bragg grating(FBG)and a Fabry-Perot interferometer(FPI)with a nano silica diaphragm.The response sensitivities of the sensor for pressure and temperature were measured as-0.98 nm/MPa and 11.10pm/℃,respectively.This sensor had an extremely low cross-sensitivity between pressure and temperature,which provided a significant potential in dual-parameter sensing.展开更多
基金supported by the Key Project of Natural Science Foundation of China under Grant No. 60537040the Natural Science Foundation Project of CQ CSTC under Grant No. 2007BB3125
文摘This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.
文摘An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the relation between deflection and pressure is analyzed. Both the mechanical model of the mesa structure diaphragm and the signal averaging effect is validated by simulation, which declares that the mesa structure diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.
基金This work was supported in part by the Natural Science Foundation of Guangdong Province,No.2020A1515010958Key Project of Shenzhen Science and Technology Plan,No.JCYJ20200109113808048.
文摘Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine.In this study,the outer diameter of the core cladding was 250μm,the diameter of the core was 9μm,and the microcavity sensing unit was only 30μm.It could measure ultrasonic signals with high precision.The characteristics of the proposed ultrasonic sensor were investigated,and its feasibility was proven through experiments.Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection.The sensor is applicable to the field of biomedical information technology,including medical diagnosis,photoacoustic endoscopy,and photoacoustic imaging.
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.
文摘Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique,diaphragm-based EFPI sensors,and white light interference technology have been reviewed.Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced.Signal demodulation algorithms based on the cross correlation and mean square error(MSE)estimation have been proposed for retrieving the cavity length of EFPI.Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out.For downhole monitoring,an EFPI and a fiber Bragg grating(FBG)cascade multiplexing fiber-optic sensor system has been developed,which can operate in temperature 300℃with a good long-term stability and extremely low temperature cross-sensitivity.Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection.Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
文摘A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the intensity of the output electric field is derived, and the effect of the external magnetic field on the ring-down time is discussed. The results show that the output light intensity and the ring-down time of the FBG-FP cavity are in the inverse proportion to the magnitude of the external magnetic field. Our results demonstrate the new concept of the fiber magnetic sensor with the FBG-FP cavity ring-down spectroscopy and the technical feasibility.
基金Project (No. 111303-8112D2) supported by the National DefenseResearch Foundation of Zhejiang University, China
文摘A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experiments to obtain the dynamic range of the F-P sensor, and a piezoelectric crystal unit (PZT) was used as the driver. The output signal was modulated by a piezoelectric ceramic ring and demodulated by a phase-locked oscillator. The experimental results show that the displacement resolution of the F-P sensor is less than 5 nm and the dynamic range is more than 100 μm. As acceleration is the second-order differential of displacement, an accelerometer model was proposed using the finite element method (FEM) nd ANSYS software.
基金funded by the National Natural Science Foundation of China(NCSF)(Grant Nos.51205049,51875091,and 51327806)the state 111 Project(Grant No.Bl4039).
文摘This paper reviews a wide variety of fiber-optic microstructure(FOM)sensors,such as fiber Bragg grating(FBG)sensors,long-period fiber grating(LPFG)sensors,Fabry-Perot interferometer(FPI)sensors,Mach-Zchnder interferometer(MZI)sensors,Michelson interferometer(MI)sensors,and Sagnac interferometer(SI)sensors.Each FOM sensor has been introduced in the terms of structure types,fabrication methods,and their sensing applications.In addition,the sensing characteristics of different structures under the same type of FOM sensor are compared,and the sensing characteristics of the all FOM sensors,including advantages,disadvantages,and main sensing parameters,are summarized.We also discuss the future development of FOM sensors.
文摘This article reviews author's research work on fiber-optic sensors over the last twenty years. It includes two aspects: low-coherence interferometric sensors (LCI) and fiber Bragg grating (FBG) sensors. For LCI sensors, author's work mainly focuses on the interrogation and multiplexing methods for Fizeau and Fabry-Perot interferometric sensors at the University of Kent at Canterbury (UKC), UK, and study on novel Fabry-Perot interferometric sensors and their multiplexing methods at Chongqing University (CQU) and University of Electronic Science & Technology of China (UESTC), China, respectively. For FBG sensors, a number of multiplexing schemes are proposed and demonstrated at UKC, and then novel methods for realization of multi-parameter measurement and long-distance measurement based on the FBG sensor and its combination with other optical fiber sensors are also reported at CQU & UESTC. Thus, author's study on these two topics can be diviaed into two periods, at UKC and at CQU & UESTC, China. This review is presented in such a time sequence.
基金supported by the National Natural Science Foundation of China(Nos.90923039 and 51025521)the 111 Project of China(No.B08043)
文摘The recent progresses of fiber sensor fabrication in our group are reviewed.Novel inline fiber Mach-Zehnder interferometer(MZI) sensors with various structures are proposed and manufactured by femtosecond laser fabrication and fusion splicing for high-quality sensing of refractivity-sensitive parameters such as temperature,concentration,humidity,pressure,stress and strain: a) for an MZI sensor with a trench on a single-mode fiber,the refractive index(RI) sensitivity of acetone vapor is about 104 nm/RIU(refractive index unit) and the temperature sensitivity is 51.5 pm/℃ from 200 to 875 ℃;b) For an MZI consisting of two micro-air-cavities,the sensitivity is 501.5 nm/RIU and the detection limit is 1.994×10-6 RIU at the refractive index of 1.4;c) to reduce the fabrication cost,a new fusion-splicing based method is proposed to fabricate MZI sensors;the sensitivity is 664.57 nm/RIU with a detection limit of 1.5×10-6 RIU and its cost is tens of times cheaper than those of commercialized long period fiber Gratings;Also,5×10-5 acetone vapors are successfully detected by the MZI sensors coated with zeolite thin films.
文摘A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/℃ to 0.89 pm/℃, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
基金This research was financially supported by the China Scholarship Council and the Natural Science Foundation of Hubei Province (Project 2000J002).
文摘Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot cavities were fabricated by stepwise assembling the polyelectrolytes onto the ends of optical fibers for the purposes of fiber optical device and sensor development. Ionically assembled polyelectrolyte multilayer thin films, in which. there are hydrophilic side groups with strong affinity towards water molecules, are a category of humidity-sensitive functional materials. The polyelectrolyte multilayer thin film Fabry-Perot cavity-type fiber optical humidity sensor can work over a wide range from about 0% RH to about 100% RH with a response time less than 1 s.
基金This work was supported by National Natural Science Foundation of China(NSFC)(Grant Nos.61905165 and 61635007)Natural Science Foundation of Guangdong Province(Grant Nos.2019A050510047,2019B1515120042,and 2018A030310581)+1 种基金Education Department of Guangdong Province(Grant No.2018KQNCX219)Science and Technology Innovation Commission of Shenzhen(Grant Nos.JCYJ20170412105604705,JCYJ20180305125352956,JCYJ20170818143853289,and JC YJ20170818093743767).
文摘A probe-shaped sensor for simultaneous temperature and pressure measurement was reported in this article.The effective length of the sensor was〜2 mm,consisting of a fiber Bragg grating(FBG)and a Fabry-Perot interferometer(FPI)with a nano silica diaphragm.The response sensitivities of the sensor for pressure and temperature were measured as-0.98 nm/MPa and 11.10pm/℃,respectively.This sensor had an extremely low cross-sensitivity between pressure and temperature,which provided a significant potential in dual-parameter sensing.