In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t...In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.展开更多
There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignme...There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.展开更多
In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived...In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.展开更多
An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for t...An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.展开更多
In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used ...In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment.展开更多
Sensor-fusion based navigation attracts significant attentions for its robustness and accuracy in various applications. To achieve a versatile and efficient state estimation both indoor and outdoor, this paper present...Sensor-fusion based navigation attracts significant attentions for its robustness and accuracy in various applications. To achieve a versatile and efficient state estimation both indoor and outdoor, this paper presents an improved monocular visual inertial navigation architecture within the Multi-State Constraint Kalman Filter (MSCKF). In addition, to alleviate the initialization demands by appending enough stable poses in MSCKF, a rapid and robust Initialization MSCKF (I-MSCKF) navigation method is proposed in the paper. Based on the trifocal tensor and sigmapoint filter, the initialization of the integrated navigation can be accomplished within three consecutive visual frames. Thus, the proposed I-MSCKF method can improve the navigation performance when suffered from shocks at the initial stage. Moreover, the sigma-point filter is applied at initial stage to improve the accuracy for state estimation. The state vector generated at initial stage from the proposed method is consistent with MSCKF, and thus a seamless transition can be achieved between the initialization and the subsequent navigation in I-MSCKF. Finally, the experimental results show that the proposed I-MSCKF method can improve the robustness and accuracy for monocular visual inertial navigations.展开更多
Inertial navigation and attitude initialization in polar areas become a hot topic in recent years in the navigation community,as the widely-used navigation mechanization of the local level frame encounters the inheren...Inertial navigation and attitude initialization in polar areas become a hot topic in recent years in the navigation community,as the widely-used navigation mechanization of the local level frame encounters the inherent singularity when the latitude approaches 90°.Great endeavors have been devoted to devising novel navigation mechanizations such as the grid or transversal frames.This paper highlights the fact that the common Earth-frame mechanization is sufficiently good to handle the singularity problem in polar areas.Simulation results are reported to demonstrate the singularity problem and the effectiveness of the Earth-frame mechanization.展开更多
文摘In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.
基金the National Natural Science Foundationunder Grant No.60604019.
文摘There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.
文摘In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.
文摘An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.
基金supported by the National Natural Science Foundation of China(61233005)the Program for New Century Excellent Talents in University(NCET-11-0771)the Aerospace Science and Technology Innovation Fund(10300002012117003)
文摘In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment.
基金the supports of the Beijing Key Laboratory of Digital Design&Manufacturethe Academic Excellence Foundation of Beihang University for Ph.D.Studentsthe MIIT(Ministry of Industry and Information Technology)Key Laboratory of Smart Manufacturing for High-end Aerospace Products
文摘Sensor-fusion based navigation attracts significant attentions for its robustness and accuracy in various applications. To achieve a versatile and efficient state estimation both indoor and outdoor, this paper presents an improved monocular visual inertial navigation architecture within the Multi-State Constraint Kalman Filter (MSCKF). In addition, to alleviate the initialization demands by appending enough stable poses in MSCKF, a rapid and robust Initialization MSCKF (I-MSCKF) navigation method is proposed in the paper. Based on the trifocal tensor and sigmapoint filter, the initialization of the integrated navigation can be accomplished within three consecutive visual frames. Thus, the proposed I-MSCKF method can improve the navigation performance when suffered from shocks at the initial stage. Moreover, the sigma-point filter is applied at initial stage to improve the accuracy for state estimation. The state vector generated at initial stage from the proposed method is consistent with MSCKF, and thus a seamless transition can be achieved between the initialization and the subsequent navigation in I-MSCKF. Finally, the experimental results show that the proposed I-MSCKF method can improve the robustness and accuracy for monocular visual inertial navigations.
文摘Inertial navigation and attitude initialization in polar areas become a hot topic in recent years in the navigation community,as the widely-used navigation mechanization of the local level frame encounters the inherent singularity when the latitude approaches 90°.Great endeavors have been devoted to devising novel navigation mechanizations such as the grid or transversal frames.This paper highlights the fact that the common Earth-frame mechanization is sufficiently good to handle the singularity problem in polar areas.Simulation results are reported to demonstrate the singularity problem and the effectiveness of the Earth-frame mechanization.