期刊文献+
共找到497,507篇文章
< 1 2 250 >
每页显示 20 50 100
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
1
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 CEMENT CONCRETE composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
2
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanismS
下载PDF
Depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite
3
作者 Feng Zhang Chenyang Zhang +5 位作者 Linlin Wu Wei Sun Hongliang Zhang Jianhua Chen Yong Pei Songjiang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期335-345,共11页
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ... The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite. 展开更多
关键词 SPHALERITE GALENA sulfite ion density functional theory depression mechanism
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
4
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
Mechanical behaviour of fiber-reinforced grout in rock bolt reinforcement
5
作者 Yingchun Li Ammar Ahmed Danqi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期437-453,共17页
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia... Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required. 展开更多
关键词 fiber-reinforced grout(FRG) Steel fibers mechanical properties Direct shear test Pullout test
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
6
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Concurrent occurrence of adenocarcinoma and urothelial carcinoma of the prostate:Coexistence mechanisms from multiple perspectives
7
作者 Xu-Chang Liu Yu-Xiang Liu Chun Liu 《World Journal of Clinical Cases》 2025年第12期5-9,共5页
This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers... This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future. 展开更多
关键词 Prostate adenocarcinoma Prostate urothelial carcinoma Coexistence mechanism Transformation mechanism TUMOR
下载PDF
Acupuncture for postoperative ileus:Advancement and underlying mechanisms
8
作者 Yang Ye Xi-Yan Xin +6 位作者 Ze-Jun Huo Yu-Tian Zhu Rui-Wen Fan Hao-Lin Zhang Yu Gao Hong-Bo Shen Dong Li 《World Journal of Gastrointestinal Surgery》 2025年第2期11-15,共5页
Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed v... Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed via pharmacological interventions,POI is increasingly being explored through adjunctive therapeutic strategies,with acupuncture gaining recognition as a promising option.Acupuncture has demonstrated encouraging potential in promoting gastrointestinal motility in patients with POI.Moreover,recent research has shed light on the therapeutic mechanisms underlying its efficacy.This article aims to present a comprehensive overview of acupuncture as a treatment for POI,highlighting advancements in clinical research and recent elucidations of its mechanistic underpinnings.It aspires to contribute a pivotal reference point for scholars and enthusiasts keen on garnering a deeper understanding of acupuncture’s role in managing POI. 展开更多
关键词 ACUPUNCTURE Gastrointestinal motility mechanism PATIENTS Postoperative ileus
下载PDF
Research progress on the physiological,biochemical and molecular regulatory mechanisms of fruit tree responses to high-temperature stress
9
作者 Que Wang Yaqiong Wu +2 位作者 Wenlong Wu Lianfei Lyu Weilin Li 《Horticultural Plant Journal》 2025年第1期1-14,共14页
Fruit trees face various adverse environmental factors,such as extreme hydrothermal changes,soil salinization and low precipitation,leading to different types of stress.High temperature is one of the main factors affe... Fruit trees face various adverse environmental factors,such as extreme hydrothermal changes,soil salinization and low precipitation,leading to different types of stress.High temperature is one of the main factors affecting the growth of fruit trees,and an appropriate ambient temperature is a necessary condition for the normal growth and development of fruit trees.Since the 20th century,due to the intensification of the greenhouse effect and global warming,there has been a significant increase in the occurrence and duration of extreme hot weather in summer has been occurring frequently and for longer durations.Thus,the growth and production of fruit trees are affected by severe hightemperature stress.Therefore,this paper primarily summarized the impacts of high-temperature stress on fruit growth and development,flowering,fruiting,fruit setting and quality.It also discussed the physiological and biochemical responses of fruit trees to high-temperature stress,research progress on the molecular mechanisms and signal transduction pathways underlying fruit tree resistance to heat or high temperature,and research on the investigation of relevant metabolites of fruit trees under stress conditions.The future research directions were discussed,and prospects and potential difficulties were proposed to serve a reference for further investigation on the high-temperature tolerance of fruit trees. 展开更多
关键词 Heat shock Heat resistance Regulatory mechanisms MIRNA Fruit crop
下载PDF
Using fracture mechanics method to analyze the failure mechanism and equilibrium equation of interfacial loess-mudstone landslides
10
作者 LI Shuanhu LI Chi GAO Yu 《Journal of Mountain Science》 2025年第1期156-166,共11页
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l... Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research. 展开更多
关键词 Loess-mudstone landslide Failure mechanism Shear fracture energy Equilibrium equation Safety factor
下载PDF
A Generative Adversarial Network with an Attention Spatiotemporal Mechanism for Tropical Cyclone Forecasts
11
作者 Xiaohui LI Xinhai HAN +5 位作者 Jingsong YANG Jiuke WANG Guoqi HAN Jun DING Hui SHEN Jun YAN 《Advances in Atmospheric Sciences》 2025年第1期67-78,共12页
Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose a... Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs. 展开更多
关键词 tropical cyclones spatiotemporal prediction generative adversarial network attention spatiotemporal mechanism deep learning
下载PDF
Influence of Mass Ratio of Resin and Stabilizer on Mechanical Properties of Mo Fiber-reinforced Granite Polymer Composite
12
作者 张超 任秀华 +6 位作者 BA Dongzhe ZHANG Jianhua LI Jianyong GUO Mengnan GAO Yinghao WANG Guixin LI Jiayang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期912-920,共9页
Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanica... Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanical properties of matrix materials with different mass ratio of resin and stabilizer(MRRS)were investigated systematically.The influences of MRRS on interface bonding strength of Mo fiber-matrix,wettability and mechanical strength of GPC were discussed,respectively,and the theoretical calculation result of MRRS k was obtained,with the optimal value of k=4.When k=4,tensile strength,tensile strain and fracture stress of the cured resin achieve the maximum values.But for k=7,the corresponding values reach the minimum.With the increase of MRRS k,surface free energy of the cured resin first increases and then decreases,while contact angles between Mo sample and matrix have displayed the opposite trend.Wettability of resin to Mo fiber is the best at k=4.Pulling load of Mo fiber and interface bonding strength appear the maximum at k=4,followed by k=5,k=3 the third,and k=7 the minimum.When k=4,mechanical properties of Mo fiber-reinforced GPC are optimal,which is consistent with the result of theoretical calculation.This study is of great significance to get better component formulas of Mo fiber reinforced GPC and to improve its application in machine tools. 展开更多
关键词 polymer composite FIBER mechanical strength interface bonding
下载PDF
Functional metabolomics analysis of the protective mechanism of total flavonoids of Scutellaria baicalensis on acute myocardial ischemia rats
13
作者 Fang-Ying Tang Ru-Yi Ma +4 位作者 An-Yao Xiong Si-Tong Lin Xiao Wang Hong-Jing Dong Jian-Yong Zhang 《Traditional Medicine Research》 2025年第3期21-31,共11页
Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats wer... Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism. 展开更多
关键词 total flavonoids of Scutellaria baicalensis acute myocardial ischemia liquid chromatography-mass spectrometry functional metabolomics mechanism
下载PDF
Characterization and Modeling of Mechanical Properties of Additively Manufactured Coconut Fiber-Reinforced Polypropylene Composites
14
作者 George Mosi Bernard W. Ikua +1 位作者 Samuel K. Kabini James W. Mwangi 《Advances in Materials Physics and Chemistry》 CAS 2024年第6期95-112,共18页
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene... In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy. 展开更多
关键词 Additive Manufacturing Artificial Neural Network mechanical Properties Natural Fibers POLYPROPYLENE
下载PDF
Wnt/β-catenin signaling components and mechanisms in bone formation,homeostasis,and disease 被引量:2
15
作者 Lifang Hu Wei Chen +1 位作者 Airong Qian Yi-Ping Li 《Bone Research》 SCIE CAS CSCD 2024年第3期469-501,共33页
Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryo... Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryonic development and adult life.Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. 展开更多
关键词 HOMEOSTASIS CANONICAL mechanismS
下载PDF
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method 被引量:1
16
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
下载PDF
Failure mechanism and infrared radiation characteristic of hard siltstone induced by stratification effect 被引量:1
17
作者 CHENG Yun SONG Zhanping +2 位作者 XU Zhiwei YANG Tengtian TIAN Xiaoxu 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1058-1074,共17页
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora... The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass. 展开更多
关键词 Hard siltstone Failure mechanism Stratification effect Infrared radiation characteristic Temporal-damage mechanism DISSIMILATION
下载PDF
Regeneration of the heart:f rom molecular mechanisms to clinical therapeutics 被引量:2
18
作者 Qian-Yun Guo Jia-Qi Yang +1 位作者 Xun-Xun Feng Yu-Jie Zhou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期80-97,共18页
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea... Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury. 展开更多
关键词 Heart regeneration Cardiac disease THERAPEUTICS Signaling mechanisms
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
19
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
Antagonism effect of residual S triggers the dual-path mechanism for water oxidation 被引量:1
20
作者 Li Liu Jinming Cao +5 位作者 Siqi Hu Tinghui Liu Can Xu Wensheng Fu Xinguo Ma Xiaohui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期568-579,I0014,共13页
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ... Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability. 展开更多
关键词 Electrochemical reconstruction Adsorbate evolution mechanism Lattice oxygen oxidation mechanism Oxygen evolution reaction Residual sulfur
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部