期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression
1
作者 Yanli Hu Peiwei Gao +2 位作者 Furong Li Zhiqing Zhao Zhenpeng Yu 《Journal of Renewable Materials》 SCIE EI 2023年第4期2055-2073,共19页
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di... In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC. 展开更多
关键词 Rubber fibre reinforced concrete(RFRC) biaxial compression-compression mechanical properties mechanism analysis failure criterion
下载PDF
ELECTRIC RESISTANCE MEASUREMENT OF CARBON FIBRE SMART CONCRETE 被引量:1
2
作者 赵斌元 李卓球 吴代华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1995年第4期52-56,共5页
After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with... After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with the time, and if changing the value of voltage, the electric resistance was obviously affected. When current flew through the specimen, polarisation emerged under a high votage (>5 upsilon), but that could be neglected under a low voltage (<5 upsilon).(1) 展开更多
关键词 carbon fibre smart concrete electric resistance measurement
下载PDF
Glass Fibre Reinforced Concrete Rebound Optimization 被引量:1
3
作者 Sadik Alper YILDIZEL Muhammet Ensar YIGIT Gokhan KAPLAN 《Computer Modeling in Engineering & Sciences》 2017年第2期203-218,共16页
Glass fibre reinforced concrete placement technique generates losses due to rebound effects of the already sprayed concrete particles.Rebounded concrete amount cause a significant difference between the initial mix de... Glass fibre reinforced concrete placement technique generates losses due to rebound effects of the already sprayed concrete particles.Rebounded concrete amount cause a significant difference between the initial mix design and emplaced mix compositions.Apart from the structural differences,it comes with a cost increase which was resulted by the splashed concrete amount.Many factors such as viscosity and quantity of mixes dominate this rebound amount in sprayed glass fibre reinforced concrete applications depending on production technologies and processes;however,this research focuses on the spray distance and the angle of the spray gun which mainly effects the rebound amount in glass fibre reinforced concrete production.This paper aims to understand the required angle and distance for glass fibre reinforced concrete mixes having on-site plastic viscosity values.Glass fibre reinforced mixtures were also modelled with a finite element method based software and,the analysis results were compared with production line results.Results of the analysis and on-site studies showed a decisive correlation between,discharge distance,discharge angle and the viscosity of the concrete. 展开更多
关键词 Glass fibre glass fibre reinforced concrete finite elements method spray distance spray Angle
下载PDF
Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action
4
作者 Mykolas DAUGEVIIUS Juozas VALIVONIS Gediminas MAR IUKAITIS 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第8期571-583,共13页
This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer(CFRP) layer under long-term load action that lasted for 330 d.We d... This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer(CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the external layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load. 展开更多
关键词 Carbon fibre composite Beam strengthening Beam deflection Long-term load Bending stiffness concrete and carbon fibre composite interface stiffness Effective inertia moment
原文传递
An Improved Test Method and Numerical Analysis for Crack Opening Resistance of FRC Round Determinate Panels 被引量:2
5
作者 GU Qian XU Hanfeng MINDESS Sidney 《Wuhan University Journal of Natural Sciences》 CAS 2009年第1期47-52,共6页
This paper presents a numerical analysis of a material test program investigating the crack opening properties of fibre reinforced concrete (FRC) round determinate panels (RDP). The objective of this research is t... This paper presents a numerical analysis of a material test program investigating the crack opening properties of fibre reinforced concrete (FRC) round determinate panels (RDP). The objective of this research is to set up a modified RDP test method to improve the current ASTM C1550 test method for FRC and fibre reinforced shotcrete (FRS) composite. By this test method, light small-diameter panels are applied and more crack information can be obtained by a new rotation angle measuring technique. It is shown that this modified test method can be used to effectively evaluate the crack opening resistance of FRC. The finite element analysis was then performed to clarify the crack propaga- tions and failure mode of FRC RDP panels. It helps establish a reasonable theoretical method to predict the structural response of RDP. combining with this modified testing technioue. 展开更多
关键词 fibre reinforced concrete test method round determinate panel finite element analysis crack opening
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部