We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique. Taking the intrinsic...We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique. Taking the intrinsic advantage of the intracavity birefringence-induced spectral filtering effect in the NPR-based ring laser cavity, the dual-wavelength dissipative solitons are obtained. In addition, the wavelength separation and the lasing location of the dual-wavelength solitons can be flexibly tuned by changing the orientation of the polarization controller.展开更多
The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of...The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.展开更多
We report on the experimental observation of soliton pulses in an erbium doped fibre ring laser. The passive mode-locking is achieved using the nonlinear polarization rotation technique. By adjusting the pump power an...We report on the experimental observation of soliton pulses in an erbium doped fibre ring laser. The passive mode-locking is achieved using the nonlinear polarization rotation technique. By adjusting the pump power and the intracavity polarization controllers, a normal soliton, a stable 8th harmonic mode-locked pulse and a noise-like pulse have been observed in our laser. The experimental results revealed that the noise-like pulse is not suitable for the optical telecommunication, and in order to obtain the stable harmonic mode-locked soliton, a strong unstable CW laser field is necessary to mediate global soliton interaction. The formation mechanism of the harmonic mode-locked pulse has also been analysed.展开更多
The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495 fs pulse width and 21 nJ pulse energy is a...The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495 fs pulse width and 21 nJ pulse energy is achieved. Another novel cavity configuration is established to eliminate the filtering effect. Pulses, each 457 fs in width and 16.5 nJ in energy, are obtained in a soliton-like regime. Pulses, each 387 fs in width and 15.8 nJ in energy, are also generated in a stretched pulse regime and could be dechirped to 119 fs externally to the cavity.展开更多
We experimentally demonstrate an all-normal-dispersion Yb-doped mode-locked fibre laser with no intentional spectral filter inserted. Pulses with 1.1 nJ pulse energy at a repetition rate of 20.4 MHz are achieved. A th...We experimentally demonstrate an all-normal-dispersion Yb-doped mode-locked fibre laser with no intentional spectral filter inserted. Pulses with 1.1 nJ pulse energy at a repetition rate of 20.4 MHz are achieved. A theoretical model of the fibre laser is derived, whose coefficients are explicitly dependent on the orientations of the wave plates and the polarizer. Based on the model, stability diagrams of both the mode-locking and the continuous wave regimes of the laser are presented. The influence of group-velocity dispersion (GVD) and cavity length on the stability of mode-locking is also discussed.展开更多
The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the in...The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.展开更多
As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promi...As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promising candidate for dual-function photonic device fabrication. In this work, the coexistence of a bound soliton and harmonic mode-locking soliton was demonstrated in an ultrafast fiber laser based on a MoS2-deposited microfiber photonic device. Through a band-pass filter, each multi-soliton state was investigated separately. The bound soliton has periodic spectral modulation of 1.55 nm with a corresponding pulse separation of 5.16 ps.The harmonic mode-locking soliton has the repetition rate of 479 MHz, corresponding to the 65th harmonic of the fundamental repetition rate. The results indicated that there exist more possibilities of different multi-soliton composites, which would enhance our understanding of multi-soliton dynamics.展开更多
We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an ab...We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an abridged Hummer's method,which is combined with polyethylene oxide to produce a composite film.The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity.The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m.The laser produces the bright pulse train with repetition rate,pulse width,pulse energy and central wavelength being 13.9 MHz,0.6 ps,2.74 p J and 1577.46 nm,respectively.Then,by adding the 10 m of single mode fiber into the laser cavity,dark soliton pulse is produced.For the formation of dark pulse train,the measured repetition rate,pulse width,pulse energy and central wavelength are 8.3 MHz,20 ns and 4.98 p J and1596.82 nm,respectively.Both pulses operate in the anomalous region.展开更多
In this paper, we demonstrated a series of short-living mode-locking(ML) states(each lasting a few to a hundred microseconds) that happened before a fiber laser reached a steady ML state.With time-stretched dispersion...In this paper, we demonstrated a series of short-living mode-locking(ML) states(each lasting a few to a hundred microseconds) that happened before a fiber laser reached a steady ML state.With time-stretched dispersion Fourier transform spectroscopy, a rich diversity of transient multi-pulse dynamics were revealed spectrally and temporally.As a result, we found that the formation of the short-living ML states was related to abundant pump power, and their decaying evolution dynamics were possibly governed by gain depletion and recovery.Our results revealed unexpected transient lasing behaviors of a soliton laser and thus might be useful to understand the complex dynamics of mode-locked lasers.展开更多
We experimentally demonstrate tunable dual-comb soliton rains in a polarization multiplexing fiber laser based on a singlewalled carbon nanotube.The repetition frequency difference of dual-comb pulses is about 39 Hz,w...We experimentally demonstrate tunable dual-comb soliton rains in a polarization multiplexing fiber laser based on a singlewalled carbon nanotube.The repetition frequency difference of dual-comb pulses is about 39 Hz,with a maximum extinction ratio of 29 dB.With suitable polarization states,one of the dual-comb pulses switches into soliton rain sequence with chirped isolating soliton trains.The signal-to-noise ratio reaches 61 dB,which is 11 dB higher than that of the normal dual-comb pulses.The intervals between chirped isolating solitons are distributed progressively,and the number of isolating solitons can be flexibly tuned from 2 to 11 by adjusting polarization state or pump power.Our work will provide support for further understanding of interaction dynamics of solitons and give a new route to the application of precision measurement.展开更多
Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a dissipative system increases without limit at certain values of the system parameters. Using the method of collective variable app...Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a dissipative system increases without limit at certain values of the system parameters. Using the method of collective variable approach, we have found an approximate relation between the parameters of the normalized complex cubic-quintic Ginzburg-Landau equation where the resonance manifests itself. Comparisons between the results obtained by collective variable approach, and those obtained by the method of moments show good qualitative agreement. This choice also helps to see the influence of the active terms on the resonance curve, so can be very useful in constructing passively mode-locked laser that generate solitons with the highest possible energies.展开更多
In this paper,both nonlinear saturable absorption and two-photon absorption(TPA) of few-layer molybdenum diselenide(MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber la...In this paper,both nonlinear saturable absorption and two-photon absorption(TPA) of few-layer molybdenum diselenide(MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber laser for the first time to our knowledge.Few-layer MoSe2 nanosheets were prepared by liquid-phase exfoliation method and characterized by x ray diffractometer,Raman spectroscopy,and atomic force microscopy.The obtained fewlayer MoSe2 dispersion is further composited with a polymer material for convenient fabrication of MoSe2 thin films.Then,we investigated the nonlinear optical(NLO) absorption property of the few-layer MoSe2 film using a balanced twin-detector measurement technique.Both the saturable absorption and TPA effects of the few-layer MoSe2 film were found by increasing the input optical intensity.The saturable absorption shows a modulation depth of 0.63% and a low nonsaturable loss of 3.5%,corresponding to the relative modulation depth of 18%.The TPA effect occurred when the input optical intensity exceeds 260 MW∕cm2.Furthermore,we experimentally exploit the saturable absorption of few-layer MoSe2 film to mode lock an all-fiber erbium-doped fiber laser.Stable soliton mode locking at 1558 nm center wavelength is achieved with pulse duration of 1.45 ps.It was also observed that the TPA process suppresses the mode-locking operation in the case of higher optical intensity.Our results indicate that layered MoSe2,as another two-dimensional nanomaterial,can provide excellent NLO properties(e.g.,saturable absorption and TPA) for potential applications in ultrashort pulse generation and optical limiting.展开更多
We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at~1938.72 nm.The temporal pulse-to-pulse separation among the multiple solitons,10 in a single-pulse bunch,inc...We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at~1938.72 nm.The temporal pulse-to-pulse separation among the multiple solitons,10 in a single-pulse bunch,increases from 0.89 ns to1.85 ns per round trip.In addition,with the increasing pump power,the number of bunched solitons increases from 3 up to 24linearly,while the average time separation in the soliton bunch varies irregularly between~0.80 and~1.52 ns.These results contribute to a more profound comprehension of nonlinear pulse dynamics in ultrafast fiber lasers.展开更多
We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber l...We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.展开更多
We demonstrate a femtosecond mode-locked erbium-doped fiber laser(EDFL) using a nickel oxide(Ni O) as a saturable absorber(SA). Ni O nanoparticles are hosted into polyethylene oxide film and attached to fiber fe...We demonstrate a femtosecond mode-locked erbium-doped fiber laser(EDFL) using a nickel oxide(Ni O) as a saturable absorber(SA). Ni O nanoparticles are hosted into polyethylene oxide film and attached to fiber ferrule in the laser cavity. The Ni O-SA shows a 39% modulation depth with a 0.04 MW∕cm^2 saturation intensity. Our ring laser cavity based on erbium-doped active fiber with managed intracavity dispersion has the ability to generate ultrashort pulses with a full width at half-maximum(FWHM) of around 2.85 nm centered at 1561.8 nm.The pulses repeat at a frequency of 0.96 MHz and duration of 950 fs.展开更多
Passively mode-locked fiber lasers (PMLFLs) could be not only used as simple and economic ultrashort pulse sources but also as an ideal platform for exploring the nonlinear dynamics of dissipative solitons such as b...Passively mode-locked fiber lasers (PMLFLs) could be not only used as simple and economic ultrashort pulse sources but also as an ideal platform for exploring the nonlinear dynamics of dissipative solitons such as bound solitons, soliton rains, noise-like pulses, sideband-controllable solitons, soliton resonance,展开更多
Passive harmonic mode-locking of dissipative solitons is demonstrated in all-normal dispersion Yb-doped fibre lasers. A difference equation model of the mode-locked fibre lasers is adopted to simulate the intra-cavity...Passive harmonic mode-locking of dissipative solitons is demonstrated in all-normal dispersion Yb-doped fibre lasers. A difference equation model of the mode-locked fibre lasers is adopted to simulate the intra-cavity nonlinear dynamics. Hysteresis phenomena around the mode-locking threshold, and the effect of introducing linear phase bias are discussed. The passive harmonic mode-locking as one kind of multipulsing operations is revealed. Moreover, the simulation shows the bistability between multipulsing and single-pulse or period multiplication.展开更多
Spatiotemporal mode-locking creates great opportunity for pulse energy scaling and nonlinear optics research in fiber.Until now,spatiotemporal mode-locking has only been realized in normal-dispersion dissipative solit...Spatiotemporal mode-locking creates great opportunity for pulse energy scaling and nonlinear optics research in fiber.Until now,spatiotemporal mode-locking has only been realized in normal-dispersion dissipative soliton and similariton fiber lasers.In this paper,we demonstrated the first experimental realization of a spatiotemporally mode-locked soliton laser in mid-infrared fluoride fiber with anomalous dispersion.The mode-locked fluoride fiber oscillator directly generated a record pulse energy of 16.1 nJ and peak power of 74.6 kW at 2.8µm wavelength.This work extends the spatiotemporal mode-locking to soliton fiber lasers and should have a wide interest for the laser community.展开更多
In this paper, the characteristics of soliton in a passively mode-locked Er-doped fiber laser modeled by a non-distributed model are numerically investigated with the split-step Fourier method. Based on the analysis a...In this paper, the characteristics of soliton in a passively mode-locked Er-doped fiber laser modeled by a non-distributed model are numerically investigated with the split-step Fourier method. Based on the analysis and model, sech2-shaped soliton is obtained by controlling the group velocity dispersion (GVD) and small-signal gain of the gain fiber. The law that the dispersion influences the characteristics of soliton in the mode-locked fiber laser is researched in net-cavity averaged anomalous dispersion regime.展开更多
As a universal phenomenon in nonlinear optical systems,intermittency is usually accompanied by the coherence loss such as soliton explosions in fiber lasers.Based on real-time spectroscopy,we revealed the coherent dis...As a universal phenomenon in nonlinear optical systems,intermittency is usually accompanied by the coherence loss such as soliton explosions in fiber lasers.Based on real-time spectroscopy,we revealed the coherent dissipative soliton intermittency in normal-dispersion fiber lasers.By increasing the pump strength,the intermittency transforms from the transient pulsation to the bo-stable soliton.It is demonstrated that the slow-gain effect dominates such coherent intermittency.Our results provide novel insights into laser physics,offering a promising approach for studying the bi-stable dissipative soliton.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11074078)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)+1 种基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant No.C10183)the Key Program for Scientific and Technological Innovations of Higher Education Institutes in Guangdong Province,China(Grant No.cxzdlOll)
文摘We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique. Taking the intrinsic advantage of the intracavity birefringence-induced spectral filtering effect in the NPR-based ring laser cavity, the dual-wavelength dissipative solitons are obtained. In addition, the wavelength separation and the lasing location of the dual-wavelength solitons can be flexibly tuned by changing the orientation of the polarization controller.
基金Project supported by the Tianjin Key Project Foundation of China (Grant No 033183611) the National Natural Science Foundation of China (Grant No 60137010), and the National High Technology Research and Development Program of China (Grant No 2003AA312100).
文摘The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.
基金Project supported by the Hebei Natural Science Foundation, China (Grant Nos F2006000183 and 2001241) and the Science Foundation of Hebei Normal University, China (Grant No L2005B05).
文摘We report on the experimental observation of soliton pulses in an erbium doped fibre ring laser. The passive mode-locking is achieved using the nonlinear polarization rotation technique. By adjusting the pump power and the intracavity polarization controllers, a normal soliton, a stable 8th harmonic mode-locked pulse and a noise-like pulse have been observed in our laser. The experimental results revealed that the noise-like pulse is not suitable for the optical telecommunication, and in order to obtain the stable harmonic mode-locked soliton, a strong unstable CW laser field is necessary to mediate global soliton interaction. The formation mechanism of the harmonic mode-locked pulse has also been analysed.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2006CB806002 and 2010CB327604)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z447)+3 种基金the National Natural Science Foundation of China (Grant Nos. 60838004 and 60678012)the Foundation for Key Program of Ministry of Education, China(Grant No. 108032)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B34)the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0597)
文摘The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495 fs pulse width and 21 nJ pulse energy is achieved. Another novel cavity configuration is established to eliminate the filtering effect. Pulses, each 457 fs in width and 16.5 nJ in energy, are obtained in a soliton-like regime. Pulses, each 387 fs in width and 15.8 nJ in energy, are also generated in a stretched pulse regime and could be dechirped to 119 fs externally to the cavity.
文摘We experimentally demonstrate an all-normal-dispersion Yb-doped mode-locked fibre laser with no intentional spectral filter inserted. Pulses with 1.1 nJ pulse energy at a repetition rate of 20.4 MHz are achieved. A theoretical model of the fibre laser is derived, whose coefficients are explicitly dependent on the orientations of the wave plates and the polarizer. Based on the model, stability diagrams of both the mode-locking and the continuous wave regimes of the laser are presented. The influence of group-velocity dispersion (GVD) and cavity length on the stability of mode-locking is also discussed.
基金the financial support from Science and Technology Project of the Jilin Provincial Department of Education (Grant No. JJKH20231171KJ)。
文摘The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.
基金partially supported by the National Natural Science Foundation of China(NSFC)(Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar(No.2014A030306019)+3 种基金Program for the Outstanding Innovative Young Talents of Guangdong Province(No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes(No.YQ2015051)Science and Technology Project of Guangdong(No.2016B090925004)Science and Technology Program of Guangzhou(No.201607010245)
文摘As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promising candidate for dual-function photonic device fabrication. In this work, the coexistence of a bound soliton and harmonic mode-locking soliton was demonstrated in an ultrafast fiber laser based on a MoS2-deposited microfiber photonic device. Through a band-pass filter, each multi-soliton state was investigated separately. The bound soliton has periodic spectral modulation of 1.55 nm with a corresponding pulse separation of 5.16 ps.The harmonic mode-locking soliton has the repetition rate of 479 MHz, corresponding to the 65th harmonic of the fundamental repetition rate. The results indicated that there exist more possibilities of different multi-soliton composites, which would enhance our understanding of multi-soliton dynamics.
文摘We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an abridged Hummer's method,which is combined with polyethylene oxide to produce a composite film.The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity.The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m.The laser produces the bright pulse train with repetition rate,pulse width,pulse energy and central wavelength being 13.9 MHz,0.6 ps,2.74 p J and 1577.46 nm,respectively.Then,by adding the 10 m of single mode fiber into the laser cavity,dark soliton pulse is produced.For the formation of dark pulse train,the measured repetition rate,pulse width,pulse energy and central wavelength are 8.3 MHz,20 ns and 4.98 p J and1596.82 nm,respectively.Both pulses operate in the anomalous region.
基金supported by the National Key Research and Development Program (No.2018YFB0504400)National Natural Science Foundation of China (NSFC)(Nos.61875243and 11804100)+1 种基金Shanghai Municipal Science and Technology Major Project (No.2019SHZDZX01)Science and Technology Innovation Program of Basic Science Foundation of Shanghai (No.18JC1412000)。
文摘In this paper, we demonstrated a series of short-living mode-locking(ML) states(each lasting a few to a hundred microseconds) that happened before a fiber laser reached a steady ML state.With time-stretched dispersion Fourier transform spectroscopy, a rich diversity of transient multi-pulse dynamics were revealed spectrally and temporally.As a result, we found that the formation of the short-living ML states was related to abundant pump power, and their decaying evolution dynamics were possibly governed by gain depletion and recovery.Our results revealed unexpected transient lasing behaviors of a soliton laser and thus might be useful to understand the complex dynamics of mode-locked lasers.
基金This work was supported by the National Natural Science Foundation of China(Nos.62105036,62105038,and 62005020)the R&D Program of Beijing Municipal Education Commission(No.KM202211232020).
文摘We experimentally demonstrate tunable dual-comb soliton rains in a polarization multiplexing fiber laser based on a singlewalled carbon nanotube.The repetition frequency difference of dual-comb pulses is about 39 Hz,with a maximum extinction ratio of 29 dB.With suitable polarization states,one of the dual-comb pulses switches into soliton rain sequence with chirped isolating soliton trains.The signal-to-noise ratio reaches 61 dB,which is 11 dB higher than that of the normal dual-comb pulses.The intervals between chirped isolating solitons are distributed progressively,and the number of isolating solitons can be flexibly tuned from 2 to 11 by adjusting polarization state or pump power.Our work will provide support for further understanding of interaction dynamics of solitons and give a new route to the application of precision measurement.
文摘Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a dissipative system increases without limit at certain values of the system parameters. Using the method of collective variable approach, we have found an approximate relation between the parameters of the normalized complex cubic-quintic Ginzburg-Landau equation where the resonance manifests itself. Comparisons between the results obtained by collective variable approach, and those obtained by the method of moments show good qualitative agreement. This choice also helps to see the influence of the active terms on the resonance curve, so can be very useful in constructing passively mode-locked laser that generate solitons with the highest possible energies.
基金supported partially by the National Science Foundation of China (61475129,61177044,61107038,and 61275050)the Project for Undergraduates’ Innovation and Undertaking in Xiamen University (0630ZX11A1)
文摘In this paper,both nonlinear saturable absorption and two-photon absorption(TPA) of few-layer molybdenum diselenide(MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber laser for the first time to our knowledge.Few-layer MoSe2 nanosheets were prepared by liquid-phase exfoliation method and characterized by x ray diffractometer,Raman spectroscopy,and atomic force microscopy.The obtained fewlayer MoSe2 dispersion is further composited with a polymer material for convenient fabrication of MoSe2 thin films.Then,we investigated the nonlinear optical(NLO) absorption property of the few-layer MoSe2 film using a balanced twin-detector measurement technique.Both the saturable absorption and TPA effects of the few-layer MoSe2 film were found by increasing the input optical intensity.The saturable absorption shows a modulation depth of 0.63% and a low nonsaturable loss of 3.5%,corresponding to the relative modulation depth of 18%.The TPA effect occurred when the input optical intensity exceeds 260 MW∕cm2.Furthermore,we experimentally exploit the saturable absorption of few-layer MoSe2 film to mode lock an all-fiber erbium-doped fiber laser.Stable soliton mode locking at 1558 nm center wavelength is achieved with pulse duration of 1.45 ps.It was also observed that the TPA process suppresses the mode-locking operation in the case of higher optical intensity.Our results indicate that layered MoSe2,as another two-dimensional nanomaterial,can provide excellent NLO properties(e.g.,saturable absorption and TPA) for potential applications in ultrashort pulse generation and optical limiting.
基金supported by the National Natural Science Foundation of China(Nos.61935013,61975133,and62005178)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)+3 种基金the Natural Science Foundation of Guangdong Province(No.2023A1515010093)the Science and Technology Innovation Commission of ShenzhenShenzhen Peacock Plan(Nos.KQTD20170330110444030,JCYJ20200109114018750,and JCYJ20220809170611004)Shenzhen University(No.2019075)。
文摘We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at~1938.72 nm.The temporal pulse-to-pulse separation among the multiple solitons,10 in a single-pulse bunch,increases from 0.89 ns to1.85 ns per round trip.In addition,with the increasing pump power,the number of bunched solitons increases from 3 up to 24linearly,while the average time separation in the soliton bunch varies irregularly between~0.80 and~1.52 ns.These results contribute to a more profound comprehension of nonlinear pulse dynamics in ultrafast fiber lasers.
基金supported by the Major National Basic Research Program of China (2013CB922401)the National Natural Science Foundation of China (60927010, 10974006, and 11027404)
文摘We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.
文摘We demonstrate a femtosecond mode-locked erbium-doped fiber laser(EDFL) using a nickel oxide(Ni O) as a saturable absorber(SA). Ni O nanoparticles are hosted into polyethylene oxide film and attached to fiber ferrule in the laser cavity. The Ni O-SA shows a 39% modulation depth with a 0.04 MW∕cm^2 saturation intensity. Our ring laser cavity based on erbium-doped active fiber with managed intracavity dispersion has the ability to generate ultrashort pulses with a full width at half-maximum(FWHM) of around 2.85 nm centered at 1561.8 nm.The pulses repeat at a frequency of 0.96 MHz and duration of 950 fs.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11674177,61322510,and 61640408)Tianjin Natural Science Foundation(Nos.16JCZDJC31000 and 14JCZDJC31300)
文摘Passively mode-locked fiber lasers (PMLFLs) could be not only used as simple and economic ultrashort pulse sources but also as an ideal platform for exploring the nonlinear dynamics of dissipative solitons such as bound solitons, soliton rains, noise-like pulses, sideband-controllable solitons, soliton resonance,
文摘Passive harmonic mode-locking of dissipative solitons is demonstrated in all-normal dispersion Yb-doped fibre lasers. A difference equation model of the mode-locked fibre lasers is adopted to simulate the intra-cavity nonlinear dynamics. Hysteresis phenomena around the mode-locking threshold, and the effect of introducing linear phase bias are discussed. The passive harmonic mode-locking as one kind of multipulsing operations is revealed. Moreover, the simulation shows the bistability between multipulsing and single-pulse or period multiplication.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.62075126 and 62005161)the Fundamental Research Funds for the Central Universities.
文摘Spatiotemporal mode-locking creates great opportunity for pulse energy scaling and nonlinear optics research in fiber.Until now,spatiotemporal mode-locking has only been realized in normal-dispersion dissipative soliton and similariton fiber lasers.In this paper,we demonstrated the first experimental realization of a spatiotemporally mode-locked soliton laser in mid-infrared fluoride fiber with anomalous dispersion.The mode-locked fluoride fiber oscillator directly generated a record pulse energy of 16.1 nJ and peak power of 74.6 kW at 2.8µm wavelength.This work extends the spatiotemporal mode-locking to soliton fiber lasers and should have a wide interest for the laser community.
基金supported by the Natural Science Foundation of Jilin (201115027)the National Natural Science Foundation of China (61171079)
文摘In this paper, the characteristics of soliton in a passively mode-locked Er-doped fiber laser modeled by a non-distributed model are numerically investigated with the split-step Fourier method. Based on the analysis and model, sech2-shaped soliton is obtained by controlling the group velocity dispersion (GVD) and small-signal gain of the gain fiber. The law that the dispersion influences the characteristics of soliton in the mode-locked fiber laser is researched in net-cavity averaged anomalous dispersion regime.
基金supported by the National Natural Science Foundation of China (Nos. 61805277, 11634010, and 11874300)Natural Science Basic Research Program of Shaanxi (No. 2019JQ-447)+2 种基金Fundamental Research Funds for the Central Universities (No. 310202011QD003)National Key R&D Program of China (No. 2017YFA0303800)Fundamental Research Funds for the Central Universities (Nos. 3102019JC008 and 3102019PY002)
文摘As a universal phenomenon in nonlinear optical systems,intermittency is usually accompanied by the coherence loss such as soliton explosions in fiber lasers.Based on real-time spectroscopy,we revealed the coherent dissipative soliton intermittency in normal-dispersion fiber lasers.By increasing the pump strength,the intermittency transforms from the transient pulsation to the bo-stable soliton.It is demonstrated that the slow-gain effect dominates such coherent intermittency.Our results provide novel insights into laser physics,offering a promising approach for studying the bi-stable dissipative soliton.