Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta...Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.展开更多
The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete sur...The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.展开更多
Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi...Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants.展开更多
Fibre-matrix interface is known to have contribution to the mechanical performance of fibre-reinforced composite by its potential for load transfer between the fibre and the matrix. Such load transfer is of great impo...Fibre-matrix interface is known to have contribution to the mechanical performance of fibre-reinforced composite by its potential for load transfer between the fibre and the matrix. Such load transfer is of great importance in dentistry when a post is used for fixing a ceramic crown on the tooth. In this study, a pull-out test was carried out to analyse the interfacial properties of a steel fibre embedded in a polyester and epoxy matrices. It was found that the fibre-matrix interface is debonded on the whole embedded length when the fibre stress reached the debonding stress. Then, the fibre stress fell down to the initial extraction stress required to pulling out the debonded fibre from the matrix. Both debonding stress and initial extraction stress initiated a linear increase with the implantation length after the debonding stress reached horizontal asymptotes. To analyse the fibre-matrix load transfer before debonding, an analytical shear-lag model was adopted to in this test conditions. Fitting the experimental results with the analytical model provided the interfacial shear strength. By considering the Coulomb friction at the fibre-matrix interface during the fibre extraction process, an analytical model which considers Poisson's effects on both fibre and matrix, was developed. In this model, knowledge of the initial extraction stress of the fibre provides the residual normal stress at the fibre-matrix interface.展开更多
A plane-strain unit-cell finite element model was proposed to study the effects of resin/sand interface adhesive and resin cohesive strength on the overall tensile strength of resin sand,as well as the fracture modes....A plane-strain unit-cell finite element model was proposed to study the effects of resin/sand interface adhesive and resin cohesive strength on the overall tensile strength of resin sand,as well as the fracture modes.The main micro-scale characteristics of the numerical model were extracted from the micrograph of resin sand specimens by three-dimensional X-ray microscopy(3 D-XRM).The extended finite element method(XFEM)and cohesive behavior method were employed to explicitly describe the resin fracture and sand/resin interface debonding,separately.The corresponding experimental observation of micro-scale failure behavior based on the scanning electron microscopy(SEM)was presented for a comparison.The numerical results show that the initial failure of the model occurs at the sand/resin interface,followed by consequent resin failure.Dependent on the resin cohesive strength,the location of resin failure varies from the central zones to resin neck arc zones.A typical mixed mode fracture is observed,which is consistent with the corresponding micro-scale experimental observation.When the resin cohesive strength ranges between 8 and 12 MPa,the resin cracks occur at the central zone of resin bridges and propagate perpendicularly to the tensile direction until through cracks happen.At a higher range(between 12 and 16 MPa),interface cracks cross with resin cracks,bonding bridges of resin sand are broken.The interface adhesive strength has a more significant effect on the overall tensile strength of resin sand than the resin cohesive strength.The overall tensile strength of resin sand increases first then keeps stable with the increase of the resin cohesive strength.This work attempts to establish a numerical model which accurately describes the complicated mixed mode fracture of resin sand,which is beneficial to understand deeply the fracture mechanism of resin sand.展开更多
The analysis of the dynamic stress on the particle-matrix interface in particle-reinforced composite for the reason that this stress may lead to the microvoids' nucleation due to the interfacial debonding were stu...The analysis of the dynamic stress on the particle-matrix interface in particle-reinforced composite for the reason that this stress may lead to the microvoids' nucleation due to the interfacial debonding were studied. For simplification, a sphere containing a concentric rigid spherical particle was taken as the representative volume element (RVE). The Laplace transformation was used to derive the basic equations, and the analytical solutions were obtained by means of Hankel transformation. Moreover, the influences of the inertia and viscosity on the debonding damage were also discussed.展开更多
In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structu...In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structural element.In other cases,they should be accounted for in the modeling in order to obtain more accurate results.Despite the large amount of research work carried out in this field in the last few decades,debonding failure modes are still not fully understood.This contribution is focused on a numerical procedure designed to model the progressive loss of bond action between FRP and concrete.The two-stage procedure is integrated into incremental,finite element analysis.The proposed algorithm uses experimentally obtained slip-stress relationship.Predefined failure criteria are used to predict the local bond failure.In the reported case study,an experimental set-up widely employed to investigate debonding is modeled.Results obtained by finite element analysis are discussed.展开更多
The problem of elastic wave scattering from a partially debonded elastic cylindrical inclusion is investigated by using the wave function expansion method and singular integral equation technique. The debonding region...The problem of elastic wave scattering from a partially debonded elastic cylindrical inclusion is investigated by using the wave function expansion method and singular integral equation technique. The debonding regions are modeled as interface cracks with non-contacting faces. The mixed boundary conditions of the problem lead to a set of simultanious dual series equations which, by introducing the dislocation density functions as unknowns, can be further converted to a set of singular integral equations of the second type. Solving these equations numerically, we obtain the dynamic stress intensity factor(DSIF), the scattered far-field pattern and the scattering cross section(SCS). The numerical results for an inclusion with one debond are presented to show the distinguishing feature of the problem-the low frequency resonances in both DSIF and SCS. Finally, as a special example, we discuss the scattering of elastic waves by a circular arc-shaped crack in a homogeneous medium. The presented method is valid when stresses have oscillatory behavior.展开更多
This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an ...This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an elliptic arc-shaped interface crack with non-contacting faces. By using the wave function (Mathieu function) expansion method and introducing the dislocation density function as an unknown variable, the problem is reduced to a singular integral equation which is solved numerically to calculate the near and far fields of the problem. The resonance of the structure and the effects of various parameters on the resonance are discussed.展开更多
An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evan...An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.展开更多
The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image co...The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber.展开更多
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
基金National Natural Science Foundation of China under Grant (Nos.52192662,52020105005,51908320)the Beijing Nova Program under Grant No.20220484012+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities,FRF-IDRY-22-013)the Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University,IIM-01-05)。
文摘Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.
基金supported by the National Natural Science Foundation of China (Grant No.41772333)the National Natural Science Foundation of Shaanxi Province, China (Grant No.2018JQ5124)the New-Star Talents Promotion Project of Science and Technology of Shaanxi Province, China (Grant No.2019KJXX049)。
文摘The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.
基金Sponsored by the General Armament Department Advanced Research Project (20101019)
文摘Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants.
文摘Fibre-matrix interface is known to have contribution to the mechanical performance of fibre-reinforced composite by its potential for load transfer between the fibre and the matrix. Such load transfer is of great importance in dentistry when a post is used for fixing a ceramic crown on the tooth. In this study, a pull-out test was carried out to analyse the interfacial properties of a steel fibre embedded in a polyester and epoxy matrices. It was found that the fibre-matrix interface is debonded on the whole embedded length when the fibre stress reached the debonding stress. Then, the fibre stress fell down to the initial extraction stress required to pulling out the debonded fibre from the matrix. Both debonding stress and initial extraction stress initiated a linear increase with the implantation length after the debonding stress reached horizontal asymptotes. To analyse the fibre-matrix load transfer before debonding, an analytical shear-lag model was adopted to in this test conditions. Fitting the experimental results with the analytical model provided the interfacial shear strength. By considering the Coulomb friction at the fibre-matrix interface during the fibre extraction process, an analytical model which considers Poisson's effects on both fibre and matrix, was developed. In this model, knowledge of the initial extraction stress of the fibre provides the residual normal stress at the fibre-matrix interface.
基金Fundamental Research Funds for the Central Universities(WUT:2018III066GX)Nature Science Foundation of Hubei Province(2017CFC809)+1 种基金China Postdoctoral Science Foundation(No.2018M632933)the Foreign Science and Technology Cooperation Project of Hubei Provenience(Grant No.2013BHE008).
文摘A plane-strain unit-cell finite element model was proposed to study the effects of resin/sand interface adhesive and resin cohesive strength on the overall tensile strength of resin sand,as well as the fracture modes.The main micro-scale characteristics of the numerical model were extracted from the micrograph of resin sand specimens by three-dimensional X-ray microscopy(3 D-XRM).The extended finite element method(XFEM)and cohesive behavior method were employed to explicitly describe the resin fracture and sand/resin interface debonding,separately.The corresponding experimental observation of micro-scale failure behavior based on the scanning electron microscopy(SEM)was presented for a comparison.The numerical results show that the initial failure of the model occurs at the sand/resin interface,followed by consequent resin failure.Dependent on the resin cohesive strength,the location of resin failure varies from the central zones to resin neck arc zones.A typical mixed mode fracture is observed,which is consistent with the corresponding micro-scale experimental observation.When the resin cohesive strength ranges between 8 and 12 MPa,the resin cracks occur at the central zone of resin bridges and propagate perpendicularly to the tensile direction until through cracks happen.At a higher range(between 12 and 16 MPa),interface cracks cross with resin cracks,bonding bridges of resin sand are broken.The interface adhesive strength has a more significant effect on the overall tensile strength of resin sand than the resin cohesive strength.The overall tensile strength of resin sand increases first then keeps stable with the increase of the resin cohesive strength.This work attempts to establish a numerical model which accurately describes the complicated mixed mode fracture of resin sand,which is beneficial to understand deeply the fracture mechanism of resin sand.
文摘The analysis of the dynamic stress on the particle-matrix interface in particle-reinforced composite for the reason that this stress may lead to the microvoids' nucleation due to the interfacial debonding were studied. For simplification, a sphere containing a concentric rigid spherical particle was taken as the representative volume element (RVE). The Laplace transformation was used to derive the basic equations, and the analytical solutions were obtained by means of Hankel transformation. Moreover, the influences of the inertia and viscosity on the debonding damage were also discussed.
文摘In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structural element.In other cases,they should be accounted for in the modeling in order to obtain more accurate results.Despite the large amount of research work carried out in this field in the last few decades,debonding failure modes are still not fully understood.This contribution is focused on a numerical procedure designed to model the progressive loss of bond action between FRP and concrete.The two-stage procedure is integrated into incremental,finite element analysis.The proposed algorithm uses experimentally obtained slip-stress relationship.Predefined failure criteria are used to predict the local bond failure.In the reported case study,an experimental set-up widely employed to investigate debonding is modeled.Results obtained by finite element analysis are discussed.
文摘The problem of elastic wave scattering from a partially debonded elastic cylindrical inclusion is investigated by using the wave function expansion method and singular integral equation technique. The debonding regions are modeled as interface cracks with non-contacting faces. The mixed boundary conditions of the problem lead to a set of simultanious dual series equations which, by introducing the dislocation density functions as unknowns, can be further converted to a set of singular integral equations of the second type. Solving these equations numerically, we obtain the dynamic stress intensity factor(DSIF), the scattered far-field pattern and the scattering cross section(SCS). The numerical results for an inclusion with one debond are presented to show the distinguishing feature of the problem-the low frequency resonances in both DSIF and SCS. Finally, as a special example, we discuss the scattering of elastic waves by a circular arc-shaped crack in a homogeneous medium. The presented method is valid when stresses have oscillatory behavior.
文摘This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an elliptic arc-shaped interface crack with non-contacting faces. By using the wave function (Mathieu function) expansion method and introducing the dislocation density function as an unknown variable, the problem is reduced to a singular integral equation which is solved numerically to calculate the near and far fields of the problem. The resonance of the structure and the effects of various parameters on the resonance are discussed.
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)Postdoctoral Science Foundation of China(Grant No.2012M511274)Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034)
文摘An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.
基金the National Natural Science Foundation of China(Nos.10972097,11062007)Specialized Research Fund for the Doctoral Programof Higher Education of China(No.20101514120005)the Inner Mongolia Natural Science Foundation of China(No.2010MS0703)
文摘The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber.
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.