A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing ...A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.展开更多
Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards ...Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.展开更多
A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtain...A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method.Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure.Subsequently,one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte.After optimizing the grating geometric variables of the structure,the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit(nm/RIU)and the figure of merit of 409 RIU^(-1).The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.展开更多
A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with saw...A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.展开更多
The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration, and it is often used as a wavefront sensor in adaptive optics systems. However, the performance of the traditional phase ...The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration, and it is often used as a wavefront sensor in adaptive optics systems. However, the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera. In this paper, a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency. The basic principle and the optics construction of the proposed method are also described in detail. The noise propagation property of the proposed method is also analysed by using the numerical simulation method, and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made. The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration, especially the wavefront aberration with larger amplitude and higher spatial frequency.展开更多
In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key elemen...In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.展开更多
Aiming at the requirements of installation and work environment of metal-based fiber Bragg grating(FBG)sensor,a resistance spot welding method is presented.Firstly,the effect of welding parameters on welding quality i...Aiming at the requirements of installation and work environment of metal-based fiber Bragg grating(FBG)sensor,a resistance spot welding method is presented.Firstly,the effect of welding parameters on welding quality is discussed theoretically,and a suitable resistance spot welding method for the metal-based FBG sensor is proposed for the first time.Then through serial resistance spot welding tests,the feasibility and practicability of the method are verified,and optimal welding parameters for two different tested metals are obtained.Fatigue performance test validates FBG sensors installed by the proposed method with good fatigue properties and long-term stable measurement performance.The research results can provide technical guidance for engineering structure long-term safety monitoring.展开更多
In this paper,we propose the novel system of multipoint measurement.The sensors of measurements are chirped Bragg grating and the interrogation of sensors is sub-carrier phase.The wavelength division multiplexing tech...In this paper,we propose the novel system of multipoint measurement.The sensors of measurements are chirped Bragg grating and the interrogation of sensors is sub-carrier phase.The wavelength division multiplexing technique is used for addressing a network of FBG sensors and the time-division multiplexing technique is used for multipoint measurements.In the system,the modulation frequency of 200 MHz is adopted.The range of dectetion is from 0 to 900μεand the resolution is 12με. The time of the sensor response is about 1ns.展开更多
In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperatu...In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.展开更多
This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model t...This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.展开更多
A high sensitive long period fiber grating(LPFG) sensor for the detection of nitrite is proposed, which is realized by coating multiple poly(sodium 4-styrensulfonate)(PSS) and poly(diallyldimethylammonium) chl...A high sensitive long period fiber grating(LPFG) sensor for the detection of nitrite is proposed, which is realized by coating multiple poly(sodium 4-styrensulfonate)(PSS) and poly(diallyldimethylammonium) chloride (PDDA) layers on the fiber grating surface. The sensitivity of this LPFG sensor is maximum when the number of assembled layers is 70. Under this condition, a nitrite concentration of 3×10^-3 mol/L, which is lower than the National Food Additive Standard, 4.2×10^-3 mol/L, can be distinguished. The sensitivity is further increased by 30% when nitrite was determined in the sucrose solution with a concentration of 65%, which provides a new solution for the best refraction index approaching matched index of the fiber cladding. Compared with chemical methods, this nitrite detection technology offers some advantages, such as high accuracy, non toxicity, high speed, low cost, without chemical reagent, and is suitable for foodstuff security detection.展开更多
An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified b...An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.展开更多
On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optic...On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optical principle of the sensor is explained, and the relation between the grating motion displacement and the phase shift of interference stripes is deduced. The improvement of the integral structure and the method of photoelectric signal processing are described in detail. With the software system based on the virtual instrument development platform Labwindows/CVI and other hardwares such as the precision displacement worktable, the surfaces of typical parts are measured and the characterization results are given. The sensor has wide measuring range and high resolution, its sensitivity and resolution being independent of the wavelength of the incident light. The vertical measuring range is 0-6 mm, and the vertical resolution is 0.005μm. The experimental results show that the sensor can be used to measure and characterize the surface topography parameters of the plane and curved surface.展开更多
A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substra...A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.展开更多
Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials....Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials.New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system.To achieve an accurate assessment of the health conditions of pipeline infrastructure,obtaining as many precise operating parameters as possible,particularly at some critical parts of the pipeline,is necessary.Therefore,a novel type of fiber grating strain sensor array is proposed herein to monitor the pipeline hoop strain.The sensor utilizes fiber grating characteristics such as light weight,corrosion resistance,remote transmission,and strong environmental adaptability.The fiber containing the grating measurement points is implanted into the composite material to complete the sensitization encapsulation and protection of the bare fiber grating.The design of the sensor array fulfills the requirements for monitoring pipeline mass data,making it easy to form a pipeline health monitoring sensor network.The sensor sensitivity is researched by using a combination of theoretical and experimental analysis.A sensitivity test,as well as linearity and stability tests,are performed on the sensor.The experimental results show that the average sensitivity of the sensor is 14.86 pm/με,and the error from the theoretical calculation analysis value is 8.75%.Due to its high reliability,good linear response and long-term stability,and the ability to reflect the exact strain change of the outer wall of the pipeline,the designed sensor can support longterm online pipeline monitoring.The fiber grating sensor array network has successfully realized the monitoring of the pipeline’s internal operation by using external strain changes.In addition to the performance benefits,there are other merits associated with the applicability of the sensor namely simple structure,compact size,manufacturing ease,and exterior installation ease.展开更多
The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryo...The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.展开更多
A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as...A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.展开更多
In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orien...In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit,thus the calibration method is needed.Based on an analysis of InGaAs imaging model,least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position.The experimental results show that the methods are effective and the demodulation system precision is improved.展开更多
Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical wa...Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.展开更多
A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
基金Project supported by the Natural Science Foundation of China (Grant Nos.62075107,61935006,62090064,and62090065)K.C.Wong Magna Fund in Ningbo University。
文摘A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
文摘Fiber Bragg grating(FBG)sensors are often used in monitoring activities and to ensure that environmental parameters satisfy industrial requirements.They offer crucial safety measures in the early detection of hazards due to their greatly reduced size,low weight,flexibility,and immunity to electromagnetic interference.These characteristics make FBGs suitable also for use in relation to the human body for in vivo measurements and long-term monitoring.In this study,recent developments are presented with regard to the utilization of these sensors to measure the so-called post-mortem interval(PMI).Such developments rely on numerical simulations based on the Matlab software and monitoring of the rectal temperature,which is one of the main parameters for estimating the PMI.First,the Matlab software is used to solve the Henssge equation for different ambient temperatures and for different body masses;then a Bragg grating sensors is used for post-mortem dating.The results and their accuracy are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61865008)the Scientific Research Fund of Sichuan Provincial Science and Technology Department,China(Grant No.2020YJ0137)。
文摘A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method.Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure.Subsequently,one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte.After optimizing the grating geometric variables of the structure,the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit(nm/RIU)and the figure of merit of 409 RIU^(-1).The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.
基金Doctoral Foundation of Ministry of Education of China (No. 20040056008)
文摘A discrimination measurement method and demodulation technique for fiber Bragg grating (FBG) sensors were presented using digital filtering technique. The system can control a tunable fiber Fabry-Perot filter with sawtooth wave voltage generated by digital clock to interrogate FBG sensors. Using the analogue digital converter (ADC), the reflected FBG signals were sampled with synchronous digital clock. With the aid of digital matched filtering technique, the sampled FBG signals were processed to obtain the maximum signal-to-noise ratio (SNR) and the Bragg wavelength shift from the FBG signals was recovered. The results demonstrate that this system has a scanning range of 1 520 nm-1 575 nm,and the wavelength detection accuracy is less than 2 pm with 1.5 Hz scanning frequency.
文摘The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration, and it is often used as a wavefront sensor in adaptive optics systems. However, the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera. In this paper, a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency. The basic principle and the optics construction of the proposed method are also described in detail. The noise propagation property of the proposed method is also analysed by using the numerical simulation method, and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made. The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration, especially the wavefront aberration with larger amplitude and higher spatial frequency.
基金supported by the Russian Ministry of Science and Higher Education (14.Y26.31.0017)Russian Foundation for Basic Research(18-52-7822)the work concerning MCF fiber Raman lasers was supported by Russian Science Foundation (21-72-30024)
文摘In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.
文摘Aiming at the requirements of installation and work environment of metal-based fiber Bragg grating(FBG)sensor,a resistance spot welding method is presented.Firstly,the effect of welding parameters on welding quality is discussed theoretically,and a suitable resistance spot welding method for the metal-based FBG sensor is proposed for the first time.Then through serial resistance spot welding tests,the feasibility and practicability of the method are verified,and optimal welding parameters for two different tested metals are obtained.Fatigue performance test validates FBG sensors installed by the proposed method with good fatigue properties and long-term stable measurement performance.The research results can provide technical guidance for engineering structure long-term safety monitoring.
文摘In this paper,we propose the novel system of multipoint measurement.The sensors of measurements are chirped Bragg grating and the interrogation of sensors is sub-carrier phase.The wavelength division multiplexing technique is used for addressing a network of FBG sensors and the time-division multiplexing technique is used for multipoint measurements.In the system,the modulation frequency of 200 MHz is adopted.The range of dectetion is from 0 to 900μεand the resolution is 12με. The time of the sensor response is about 1ns.
基金Supported by Science & Engineering Research Council of Singapore (052 118 0052)
文摘In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.
文摘This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.
基金Supported by the National Natural Science Foundation of China(Nos.60707016 and 60807030)
文摘A high sensitive long period fiber grating(LPFG) sensor for the detection of nitrite is proposed, which is realized by coating multiple poly(sodium 4-styrensulfonate)(PSS) and poly(diallyldimethylammonium) chloride (PDDA) layers on the fiber grating surface. The sensitivity of this LPFG sensor is maximum when the number of assembled layers is 70. Under this condition, a nitrite concentration of 3×10^-3 mol/L, which is lower than the National Food Additive Standard, 4.2×10^-3 mol/L, can be distinguished. The sensitivity is further increased by 30% when nitrite was determined in the sucrose solution with a concentration of 65%, which provides a new solution for the best refraction index approaching matched index of the fiber cladding. Compared with chemical methods, this nitrite detection technology offers some advantages, such as high accuracy, non toxicity, high speed, low cost, without chemical reagent, and is suitable for foodstuff security detection.
基金National Natural Science Foundation of China(No.51935011)Natural Science Foundation of Shanxi Province of China(No.201901D111160)Innovative Research Group Project of National Science Foundation of China(No.51821003)。
文摘An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.
基金This project is supported by National Natural Sciences Foundation of China (No.50175037).
文摘On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optical principle of the sensor is explained, and the relation between the grating motion displacement and the phase shift of interference stripes is deduced. The improvement of the integral structure and the method of photoelectric signal processing are described in detail. With the software system based on the virtual instrument development platform Labwindows/CVI and other hardwares such as the precision displacement worktable, the surfaces of typical parts are measured and the characterization results are given. The sensor has wide measuring range and high resolution, its sensitivity and resolution being independent of the wavelength of the incident light. The vertical measuring range is 0-6 mm, and the vertical resolution is 0.005μm. The experimental results show that the sensor can be used to measure and characterize the surface topography parameters of the plane and curved surface.
基金Projects(51875585, 51875584, 51935013) supported by the National Natural Science Foundation of ChinaProject(2020JJ4247) supported by the Natural Science Foundation of Hunan Province,ChinaProject(ZHD202001) supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China。
文摘A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.
基金supported by the National Key R&D Program of China(Grants 2018YFF0214700)Hubei Province Science and Technology Special Major Project(2016AAA008)New Research and Development Agency Project of Zhongshan Science and Technology Bureau(2017F2FC003)in China.
文摘Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials.New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system.To achieve an accurate assessment of the health conditions of pipeline infrastructure,obtaining as many precise operating parameters as possible,particularly at some critical parts of the pipeline,is necessary.Therefore,a novel type of fiber grating strain sensor array is proposed herein to monitor the pipeline hoop strain.The sensor utilizes fiber grating characteristics such as light weight,corrosion resistance,remote transmission,and strong environmental adaptability.The fiber containing the grating measurement points is implanted into the composite material to complete the sensitization encapsulation and protection of the bare fiber grating.The design of the sensor array fulfills the requirements for monitoring pipeline mass data,making it easy to form a pipeline health monitoring sensor network.The sensor sensitivity is researched by using a combination of theoretical and experimental analysis.A sensitivity test,as well as linearity and stability tests,are performed on the sensor.The experimental results show that the average sensitivity of the sensor is 14.86 pm/με,and the error from the theoretical calculation analysis value is 8.75%.Due to its high reliability,good linear response and long-term stability,and the ability to reflect the exact strain change of the outer wall of the pipeline,the designed sensor can support longterm online pipeline monitoring.The fiber grating sensor array network has successfully realized the monitoring of the pipeline’s internal operation by using external strain changes.In addition to the performance benefits,there are other merits associated with the applicability of the sensor namely simple structure,compact size,manufacturing ease,and exterior installation ease.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11302225,11121202 and 11327802the National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant No 2013GB110002the Postdoctoral Science Foundation of China under Grant No 2014M560820
文摘The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.
基金supported by the 11th Five Years Key Programs for Science and Technology Development of China under Grant No. 2006BAK04B02Natural Science Foundation of Shandong Province under Grant No. 2006ZRC01022.
文摘A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.
文摘In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit,thus the calibration method is needed.Based on an analysis of InGaAs imaging model,least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position.The experimental results show that the methods are effective and the demodulation system precision is improved.
基金supported by the National Natural Science Foundation of China under Grant No. 60671027the Application Basis Research Foundation of Sichuan Province under Grant No. 07JY029-089.
文摘Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.