Damage in central nervous system plays an important role in biological life and causes severe paralysis of limbs and some organs. There are solutions to problems that can be a great revolution in the transplanted spin...Damage in central nervous system plays an important role in biological life and causes severe paralysis of limbs and some organs. There are solutions to problems that can be a great revolution in the transplanted spinal cord and nerve injuries. Schwann cells (SCs) have important roles in development, myelination and regeneration in the peripheral nervous system. The applications of SCs in regenerative medicine are limited because of slow growth rate and difficulties in harvesting. Critical to the hypothesis is the experimental fact that human endometrial-derived stem cells (hEnSCs) as multipotent accessible source of cells are known as useful cell candidates in the field of nerve tissue engineering. We decided to use the three-dimensional culture of Schwann cells differentiated from endometrial stem cell in fibrin gel. In this study, we investigate the expression of differentiated Schwann cell markers by exposing of endometrial stem cells with induction media including FGF2/FSK/HRG/RA. Using immunocytochemistry, we show that differentiated cells express S100 and P75 markers. These results show that for the first time, human endometrial stem cells can be differentiated into Schwann cells in 2D and 3D culture. These novel differentiated cells in fibrin gel might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches for nerve repair.展开更多
The poly(lactide-co-glycolide)(PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro.The fibrin gel evenly distribute...The poly(lactide-co-glycolide)(PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro.The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying.In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage.Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds,they were remarkably elongated,forming a fibroblast-like morphology.Moreover,a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks.The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.展开更多
文摘Damage in central nervous system plays an important role in biological life and causes severe paralysis of limbs and some organs. There are solutions to problems that can be a great revolution in the transplanted spinal cord and nerve injuries. Schwann cells (SCs) have important roles in development, myelination and regeneration in the peripheral nervous system. The applications of SCs in regenerative medicine are limited because of slow growth rate and difficulties in harvesting. Critical to the hypothesis is the experimental fact that human endometrial-derived stem cells (hEnSCs) as multipotent accessible source of cells are known as useful cell candidates in the field of nerve tissue engineering. We decided to use the three-dimensional culture of Schwann cells differentiated from endometrial stem cell in fibrin gel. In this study, we investigate the expression of differentiated Schwann cell markers by exposing of endometrial stem cells with induction media including FGF2/FSK/HRG/RA. Using immunocytochemistry, we show that differentiated cells express S100 and P75 markers. These results show that for the first time, human endometrial stem cells can be differentiated into Schwann cells in 2D and 3D culture. These novel differentiated cells in fibrin gel might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches for nerve repair.
基金supported by the National Natural Science Foundation of China(No.20934003)the Major State Basic Research Program of China(No.2005CB623902)+1 种基金the National High-tech Research and Development Program (No.2006AA03Z442)the Science and Technology Program of Zhejiang Province(No.2007C23014)
文摘The poly(lactide-co-glycolide)(PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro.The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying.In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage.Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds,they were remarkably elongated,forming a fibroblast-like morphology.Moreover,a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks.The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.