Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a ...Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a regulator of iron and reactive oxygen species homeostasis.The relationship between heme oxygenase-1and ferroptosis remains controve rsial.In this study,we used a spinal co rd injury rat model to show that the levels of fibroblast growth factor 21 in spinal co rd tissue decreased after spinal cord injury.In addition,there was a significant aggravation of ferroptosis and a rapid increase in heme oxygenase-1 expression after spinal cord injury.Furthe r,heme oxygenase-1 aggravated fe rroptosis after spinal cord injury,while fibroblast growth factor 21 inhibited fe rroptosis by downregulating heme oxygenase-1.Thus,the activation of fibroblast growth factor 21 may provide a potential treatment for spinal co rd injury.These findings could provide a new potential mechanistic explanation for fibroblast growth factor 21 in the treatment of spinal cord injury.展开更多
Background: Previous research suggested that insulin-like growth factor binding protein related protein 1(IGFBPrP1), as a novel mediator, contributes to hepatic fibrogenesis. Matrix metalloproteinases(MMP) and tissue ...Background: Previous research suggested that insulin-like growth factor binding protein related protein 1(IGFBPrP1), as a novel mediator, contributes to hepatic fibrogenesis. Matrix metalloproteinases(MMP) and tissue inhibitors of metalloproteinases(TIMP) play an essential role in hepatic fibrogenesis by regulating homeostasis and remodeling of the extracellular matrix(ECM). However, the interaction between IGFBPrP1 and MMP/TIMP is not clear. The present study was to knockdown IGFBPrP1 to investigate the correlation between IGFBPrP1 and MMP/TIMP in hepatic fibrosis. Methods: Hepatic fibrosis was induced by thioacetamide(TAA) in mice. Knockdown of IGFBPrP1 expression by ultrasound-targeted microbubble destruction-mediated CMB-shRNA-IGFBPrP1 delivery, or inhibition of the Hedgehog(Hh) pathway by cyclopamine treatment, was performed in TAA-induced liver fibrosis mice. Hepatic fibrosis was determined by hematoxylin and eosin and Sirius red staining. Hepatic expression of IGFBPrP1, α-smooth muscle actin( α-SMA), transforming growth factor β 1(TGF β1), collagen I, MMPs/TIMPs, Sonic Hedgehog(Shh), and glioblastoma family transcription factors(Gli1) were investigated by immunohistochemical staining and Western blotting analysis. Results: We found that hepatic expression of IGFBPrP1, TGF β1, α-SMA, and collagen I were increased longitudinally in mice with TAA-induced hepatic fibrosis, concomitant with MMP2/TIMP2 and MMP9/TIMP1 imbalance and Hh pathway activation. Knockdown of IGFBPrP1 expression, or inhibition of the Hh pathway, reduced the hepatic expression of IGFBPrP1, TGF β1, α-SMA, and collagen I and re-established MMP2/TIMP2 and MMP9/TIMP1 balance. Conclusions: Our findings suggest that IGFBPrP1 knockdown attenuates liver fibrosis by re-establishing MMP2/TIMP2 and MMP9/TIMP1 balance, concomitant with the inhibition of hepatic stellate cell activation, down-regulation of TGF β1 expression, and degradation of the ECM. Furthermore, the Hh pathway mediates IGFBPrP1 knockdown-induced attenuation of hepatic fibrosis through the regulation of MMPs/TIMPs balance.展开更多
BACKGROUND Studies have shown that insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)plays critical roles in the genesis and development of human cancers.AIM To investigate the clinical significance and role...BACKGROUND Studies have shown that insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)plays critical roles in the genesis and development of human cancers.AIM To investigate the clinical significance and role of IGF2BP1 in pancreatic cancer.METHODS Expression levels of IGF2BP1 and microRNA-494(miR-494)were mined based on Gene Expression Omnibus datasets and validated in both clinical samples and cell lines by quantitative real-time polymerase chain reaction and Western blot.The relationship between IGF2BP1 expression and clinicopathological factors of pancreatic cancer patients was analyzed.The effect and mechanism of IGF2BP1 on pancreatic cancer cell proliferation were investigated in vitro and in vivo.Analyses were performed to explore underlying mechanisms of IGF2BP1 upregulation in pancreatic cancer and assays were carried out to verify the posttranscriptional regulation of IGF2BP1 by miR-494.RESULTS We found that IGF2BP1 was upregulated and associated with a poor prognosis in pancreatic cancer patients.We showed that downregulation of IGF2BP1 inhibited pancreatic cancer cell growth in vitro and in vivo via the AKT signaling pathway.Mechanistically,we showed that the frequent upregulation of IGF2BP1 was attributed to the downregulation of miR-494 expression in pancreatic cancer.Furthermore,we discovered that reexpression of miR-494 could partially abrogate the oncogenic role of IGF2BP1.CONCLUSION Our results revealed that upregulated IGF2BP1 promotes the proliferation of pancreatic cancer cells via the AKT signaling pathway and confirmed that the activation of IGF2BP1 is partly due to the silencing of miR-494.展开更多
To assess the relationship between serum levels of insulin-like growth factor-1 (IGF1)/IGF-binding protein-3 (IGFBP3) and the risk of esophageal carcinoma.METHODSWe assessed the relationship between the serum levels o...To assess the relationship between serum levels of insulin-like growth factor-1 (IGF1)/IGF-binding protein-3 (IGFBP3) and the risk of esophageal carcinoma.METHODSWe assessed the relationship between the serum levels of these molecules and the risk of esophageal cancer in a prospective, nested case-control study of participants from the Japan Collaborative Cohort Study. A baseline survey was conducted from 1988 to 1990. Of the 110585 enrolled participants, 35% donated blood samples. Those who had been diagnosed with esophageal cancer were considered cases for nested case-control studies. A conditional logistic model was used to estimate odds ratios for the incidence of esophageal cancer associated with serum IGF1 and IGFBP3 levels.RESULTSThirty-one cases and 86 controls were eligible for the present assessment. The molar ratio of IGF1/IGFBP3, which represents the free and active form of IGF1, was not correlated with the risk of esophageal carcinoma. A higher molar difference between IGFBP3 and IGF1, which estimates the free form of IGFBP3, was associated with a decreased risk of esophageal carcinoma (P = 0.0146), and people in the highest tertile had the lowest risk (OR = 0.107, 95%CI: 0.017-0.669). After adjustment for body mass index, tobacco use, and alcohol intake, the molar difference of IGFBP3-IGF1 was inversely correlated with the risk of esophageal carcinoma (P = 0.0150).CONCLUSIONThe free form of IGFBP3, which is estimated by this molar difference, may be inversely associated with esophageal cancer incidence.展开更多
BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the stron...BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGF beta 1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGF beta 1 or IGFBPrP1 and inhibited TGF beta 1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of a-smooth muscle actin (alpha-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGF beta 1 gene (AdTGF beta 1) induced IGFBPrP1 expression while that of alpha-SMA, collagen I, fibronectin, and TGF beta 1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGF beta 1, alpha-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGF beta 1 expression reduced the IGFBPrP1-stimulated expression of alpha-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGF beta 1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGF beta 1-depedent manner, and may act as an upstream regulatory factor of TGF beta 1 in the Smad pathway.展开更多
BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJE...BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJECTIVE: To investigate the regulatory effects of basic fibroblast growth factor (bFGF) on cerebral neuronal CREB expression following ischemia/reperfusion injury. DESIGN, TIME AND SETTING: An immunohistochemical detection experiment was performed at the Department of Anatomy, Shenyang Medical College, between October 2006 and April 2008. MATERIALS: A total of 60 healthy, adult, Wistar rats were randomly divided into three groups: sham-operated (n =12), ischemia/reperfusion (n = 24), and bFGF-treated (n = 24). Rabbit anti-rat CREB (1: 100) and biotin labeled goat anti-rabbit IgG were purchased from the Wuhan Boster Company, China. MetaMorph-evolution MP5.0-BX51 microscopy imaging system was provided by China Medical University, China. METHODS: Rat models of cerebral ischemia/reperfusion injury were developed using the suture method for right middle cerebral artery occlusion. Two-hour ischemia was followed by reperfusion. Rats from the bFGF-treated and ischemia/reperfusion groups were intraperitoneally administered endogenous bFGF (500 IU/mL, 2 000 IU/kg) or an equal amount of physiological saline. Rats from the sham-operated group underwent a similar surgical procedure, without induction of ischemia/reperfusion injury and drug administration. MAIN OUTCOME MEASURES: After 48-hour reperfusion, hippocampal and parietal cortical neuronal CREB expression was detected by immunohistochemistry, and the absorbance of hippocampal CREB-positive products was determined using MetaMorph-evolutionMP5.0-BX51 microscopy imaging system. RESULTS: The sham-operated group exhibited noticeable CREB expression in hippocampal and parietal cortical neurons. In the ischemia/reperfusion group, the CREB expression was discrete and neurons were poorly arranged. The bFGF-treated group exhibited increased CREB expression and better neuronal arrangement compared with the ischemia/reperfusion group. The mean absorbance of CREB-immunoreactive products in the hippocampus and parietal cortex was significantly higher in the ischemia/reperfusion group than in the sham-operated group (P 〈 0.05), and significantly higher in the bFGF-treated group than in the ischemia/reperfusion group (P 〈 0.05). CONCLUSION: bFGF significantly upregulates CREB expression in hippocampal and parietal cortical neurons following ischemia/reperfusion injury.展开更多
AIM: To investigate the effect of microR NA on insulinlike growth factor binding protein-3(IGFBP-3) and hence on insulin-like growth factor-Ⅱ(IGF-Ⅱ) bioavailability in hepatocellular carcinoma(HCC).METHODS: Bioinfor...AIM: To investigate the effect of microR NA on insulinlike growth factor binding protein-3(IGFBP-3) and hence on insulin-like growth factor-Ⅱ(IGF-Ⅱ) bioavailability in hepatocellular carcinoma(HCC).METHODS: Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mir Vana mi RNA Isolation Kit. microR NA-17-5p(miR-17-5p) expression was mimicked and antagonized in Hu H-7 cell lines using Hi Per Fect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cD NA followed by quantification of mi R-17-5p and IGFBP-3 expression using Taq Man real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3'UTR of IGFBP-3. Free IGF-Ⅱ protein was measured in transfected Hu H-7 cells using IGF-Ⅱ ELISA kit. RESULTS: Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where mi R-17-5p was extensively underexpressed in HCC tissues(P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients(P = 0.0041) compared to healthy donors. Forcing mi R-17-5p expression in Hu H-7 cell lines showed a significant downregulation of IGFBP-3 mR NA expression(P = 0.0267) and a significant increase in free IGF-Ⅱ protein(P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of mi R-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone(P = 0.0474).CONCLUSION: These data suggest that regulating IGF-Ⅱ bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of miR NAs.展开更多
BACKGROUND A twin pregnancy can carry greater risks than singleton pregnancies.About 60 in 100 twin pregnancies result in spontaneous birth before 37 wk,which is associated with several complications in the premature ...BACKGROUND A twin pregnancy can carry greater risks than singleton pregnancies.About 60 in 100 twin pregnancies result in spontaneous birth before 37 wk,which is associated with several complications in the premature babies.Clinical detection of biomarkers may help to predict the possibility of premature birth so that corresponding interventions can be given to the pregnant women in a timely manner,in order to reduce the risk of preterm birth and improve the outcomes of the newborn infants.AIM To explore the clinical value of transvaginal ultrasound measurement of cervical length combined with insulin-like growth factor binding protein-1(IGFBP-1)hyperphosphorylation in cervical secretions as predictors of preterm delivery in twin pregnancies.METHODS A total of 254 pregnant women with twin pregnancies,who were admitted to Hainan General Hospital and underwent maternity examination,were selected as the study subjects from January 2015 to December 2018.All participants received transvaginal ultrasound measurement of cervical length and phosphorylated IGFBP-1(phIGFBP-1)test between 24 and 34 wk gestation.The pregnancy outcomes were analyzed.RESULTS Of the women with a positive phIGFBP-1 test result,preterm birth rate was higher in those with a cervical length≤25 mm than those with a cervical length>25 mm(all P<0.05).Similarly,in women with a negative phIGFBP-1 test result,preterm birth rate was higher in those with a cervical length≤25 mm than those with a cervical length>25 mm(all P<0.05).The sensitivity,specificity,and positive and negative predictive values of the phIGFBP-1 test combined with the cervical length test were 95.71%,91.21%,95.12%and 92.22%,respectively,for the prediction of preterm birth.CONCLUSION Cervical length combined with phIGFBP-1 tests is of value for the prediction of outcomes of preterm delivery in twin pregnancies.展开更多
Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited ...Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at Ts, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast grow th factor- 1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP- 2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS^+ cells and that the migration of the arginase-1^+ population could be regulated locally. Simultaneous application of MMP in- hibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.展开更多
There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined w...There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined whether the expression of fibroblast growth factor-2 (FGF2) and fibroblast growth factor receptor-1 (FGFR1) protein is altered following chronic stress in an animal model. Rats were exposed to 35 days of chronic unpredictable mild stress, and then tested using open-field and sucrose consumption tests. Compared with the control group, rats in the chronic stress group exhibited obvious depressive-like behaviors, including anhedonia, anxiety and decreased mobility. The results of western blot analysis and immunohistochemical analysis revealed a downregulation of the expression of FGF2 and FGFR1 in the hippocampus of rats, particularly in the CA1, CA3 and dentate gyrus. This decreased expression is in accord with the results of post-mortem studies in humans with major depressive disorder. These findings suggest that FGF2 and FGFR1 proteins participate in the pathophysiology of depressive-like behavior, and may play an important role in the mechanism of chronic stress-induced depression.展开更多
Background:Intensive exercise changes physiological need for glucose and several biochemical pathways responsible for its metabolism response.Among them are those which involve insulin,insulin-like growth factor(IGF-1...Background:Intensive exercise changes physiological need for glucose and several biochemical pathways responsible for its metabolism response.Among them are those which involve insulin,insulin-like growth factor(IGF-1),and IGF-binding proteins(IGFBPs).Different types and degrees of exercise,as well as an athlete's fitness,may induce a range of responses regarding concentrations and time needed for the alteration.The idea of the work was to find out whether and how insulin/IGF axis responds to additional physical activity in the already trained subjects and if so,is the adaptation potentially beneficial from the aspect of metabolic control.Methods:The effect of 4-week intensive training on campus(preparatory training) on the levels of insulin,IGF-1,and IGFBPs during maximal progressive exercise test(MPET) on a treadmill was compared to the results obtained during MPET conducted after a regular training season of a female elite handball team(n = 17,age:17 ± 1 years,height:171 ± 8 cm,weight:65 ± 8 kg,body mass index:22 ± 1 kg/m^2 at the beginning of the study;there were no significant changes at the end).Serum samples were obtained from players immediately before the test(basal),at the end of the test after reaching the point of maximal oxygen consumption(VO_(2max)),and after recovery.Results:The concentration of insulin decreased at VO_(2max),but remained higher in players after preparatory training(12.2 ± 2.5 m U/L vs.8.9 ± 4.4 m U/L,p = 0.049).The level of IGFBP-1 decreased in players at VO_(2max) in either case of training,but it remained much higher in tests performed after the preparatory regime than before(p = 0.029).Concentrations of IGF-1,IGFBP-2,-3,and-4 did not change significantly.Conclusion:The inverse relation between insulin and IGFBP-1 was lost during MPET,as these 2 molecules changed in the same direction.The results obtained suggest less severe stress-induced depression of insulin and IGFBP-1 after preparatory training.But another metabolic mechanism cannot be excluded,and that is potentially impaired insulin sensitivity resulting in higher level of IGFBP-1.展开更多
OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like g...OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.展开更多
Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and ...Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.展开更多
AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-beta 1 (TGF-beta 1) in ocular Tenon capsule fibroblasts (OTFS) in v...AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-beta 1 (TGF-beta 1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS: After OTFS from passages 4 to 6 47 vitro were induced by TGF-beta 1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the alpha -smooth muscular actin (alpha -SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the alpha -SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS: Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-beta 1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-beta 1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both alpha -SMA and CTGF, while to some extent inhibited that of collagen I. TGF-beta 1 significantly promoted the proteins expressions of alpha -SMA, CTGF and collagen I. After OTFS treated by both TGF-beta 1 and Y-27632, of alpha -SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the alpha -SMA, CTGF and collagen I mRNA in 30, 150, 750 mu mol/L Y-27632 group were statistically significant, compared with those in control group, respectively (alpha -SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I,P=0.003, 0.002, 0.000). CONCLUSION: Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and alpha -SMA whatever OTFS induced by TGF-beta 1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction.展开更多
BACKGROUND: Neural stem cell (NSC) survival is closely associated with cell apoptosis in ischemic-hypoxic regions following transplantation. Numerous studies have revealed that X-box binding protein 1 (XBP1) is a...BACKGROUND: Neural stem cell (NSC) survival is closely associated with cell apoptosis in ischemic-hypoxic regions following transplantation. Numerous studies have revealed that X-box binding protein 1 (XBP1) is a transcription factor during endoplasmic reticulum unfolded protein response and is essential for cell survival, differentiation, and anti-apoptotic effects. OBJECTIVE: To determine the effects of the XBP1 gene on NSC proliferation and apoptosis under hypoxic conditions following XBP1 gene transfection into rat embryonic hippocampal NSCs using recombinant adenovirus vector. DESIGN, TIME AND SETTING: In vitro experiments were performed at the Laboratory of Cell Biology of Jilin University and Laboratory of Proteomics, Department of Neurology, Jilin University China from September 2008 to November 2009. MATERIALS: Recombinant adenovirus package XBP1 gene and Ad-XBPl-enhanced green fluorescent protein plasmid (Guangzhou Easywin BioMed Technology, China), rabbit anti-XBP1 and its target gene estrogen receptor degradation-enhancing a-mannosidase-like protein (EDEM) glucose-regulated protein 78 (GRP78), anti-apoptotic molecule Bcl-2 and proapoptotic molecule Bax polyclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and COCI2 (Sigma, St. Louis, MO, USA) were used in the present study. METHODS: Hippocampi from embryonic, Sprague Dawley rats on gestational day 16 were harvested for NSC isolation and cloning, followed by immunofluorescence for Nestin and sub-culturing. The recombinant adenovirus Ad-XBPl-enhanced green fluorescent protein plasmid was transfected into rat embryonic hippocampal NSCs, and then CoCl2 was applied to induce hypoxia. MAIN OUTCOME MEASURES: Cell quantification and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide colorimetric assay were utilized to detect proliferation in XBPl-transfected NSCs for 7 consecutive days. Western blot assay was utilized to quantify XBP1 GRP78, EDEM, Bcl-2, and Bax expression. Flow cytometry was used to measure apoptosis. RESULTS: NSC proliferation was significantly enhanced following XBP1 gene transfection (P 〈 0.05). Under hypoxic conditions, GRP78, EDEM, and Bcl-2 levels increased, but Bax levels decreased. In addition, NSC apoptosis decreased following transfection (P 〈 0.05). CONCLUSION: The XBP1 gene was successfully transfected into rat embryonic hippocampal NSCs using a recombinant adenovirus vector. NSC proliferation following transfection, as well as anti-apoptotic effects under hypoxia, was significantly increased.展开更多
BACKGROUND: Spleen deficiency in traditional Chinese medicine refers to the functional disorder of spleen, pancreas, intestines, and nervous system in modern medicine. OBJECTIVE; To test whether electro-acupuncture c...BACKGROUND: Spleen deficiency in traditional Chinese medicine refers to the functional disorder of spleen, pancreas, intestines, and nervous system in modern medicine. OBJECTIVE; To test whether electro-acupuncture could alter basic fibroblast growth factor (bFGF) protein and mRNA expression in the hippocampal dentate gyrus of spleen deficiency rats. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo animal experiment was performed at the National LeveI-B Laboratory of Clinical Cell Molecule and Biology in Shenzhen Hospital of Traditional Chinese Medicine, between March and November in 2008. MATERIALS: Reserpine injection was produced by Guangdong Bangmin Pharmaceutical Co. Rhubarb extract granule preparation was produced by Guangdong Yifang Pharmaceutical. Huanqiu Brand sterile acupuncture pin was provided by Suzhou Acupuncture Supplies, China. Huatuo Brand electroacupuncture instrument (type SDZ-II) was purchased from Suzhou Medical Appliance Factory, China. METHODS: A total of 96 male Sprague Dawley rats were randomly assigned to control (n = 32) and induction (n = 64) groups. Spleen deficiency was induced via intraperitoneal injection of reserpine and intragastric administration of rhubarb. The successful models were randomized into two groups: model and electro-acupuncture, with 32 rats in each group. Electro-acupuncture was administered at Zusanfi (ST 36) and Sanyinjiao (SP 6) acupoints using a condensation wave and rarefaction (condensation wave 15 Hz) at a strength of 6-15 V for 20 minutes, once per day. The appearance of a slight shiver in the corresponding locus was taken as the standard. According to electro- acupuncture time points, each group was assigned to four subgroups at 7, 14, 28, and 49 days, respectively, with eight rats in each subgroup. Immunohistochemical staining, image analysis, and reverse-transcription polymerase chain reaction were performed at different time points. MAIN OUTCOME MEASURES: bFGF protein and mRNA expression in the hippocampal dentate gyrus of spleen deficiency rats. RESULTS: After 7 days of electro-acupuncture therapy, bFGF protein and mRNA expression significantly increased compared with the model and control groups (P 〈 0.05). After 14 days, bFGF protein and mRNA expression decreased until 28 days, where levels were then equal to the model group and greater than the control group (P 〈 0.05). After 49 days, the above indices remained increased in the electro-acupuncture group compared to the model and control groups (P 〈 0.05). CONCLUSION: Continuous electro-acupuncture maintained a high level of bFGF protein and mRNA expression in the hippocampal dentate gyrus of spleen deficiency rats.展开更多
AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cel...AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC 50 ) and reversal index (IC 50 in experimental group/IC 50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC 50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/ OXA/T cells, in which FGFR2 was silenced by FGFR2 shRNA. In the examined HepG2 cells, the FGFR2, p-ERK1/2 and ERCC1 expression levels demonstrated increasing trends in the OXA group and OXA + FGF7 group. Compared with the OXA group and OXA + FGF7 group, the FGFR2, p-ERK1/2, and ERCC1 expression levels were significantly lower in the OXA + emodin group, and these differences were statistically significant. In the HepG2/OXA/T cell line that was transfected with FGFR2 shRNA, the FGFR2, p-ERK1/2 and ERCC1 expression levels were significantly inhibited, but there were no significant differences in these expression levels among the OXA, OXA + FGF7 and OXA + emodin groups. CONCLUSION: Emodin markedly reversed OXA resistance by enhancing OXA DNA damage in HepG2/OXA cells, and the molecular mechanism was related to the inhibitory effect on ERCC1 expression being mediated by the FGFR2/ERK1/2 signaling pathway.展开更多
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures...Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-la (HIF-la) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-la mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-la and FGF23 were co-localized in spindle- shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-la protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-la expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-la inhibitors decreased HIF-la and FGF23 protein accumulation and inhibited HIF-la-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-la consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-la inhibitor. These results show for the first time that HIF-la is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-la activity in TIO contributes to the aberrant FGF23 production in these patients.展开更多
The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features an...The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features and angiogenesis were investigated by means of immunohistochemical technique. The expression of bFGF and FGFR-1 was detected by antibody of bFGF or FGFR-1. The tumors' angiogenesis was evaluated by microvascular density (MVD) and, which was observed by use of CD34-antibody immunohistochemically. The results showed that there were varied degrees of the expression of bFGF and FGFR-1 proteins in meningiomas. The expression was correlated with the tumors' histological characters and angiogenesis. It was concluded that bFGF and FGFR-1 might play important roles in meningiomas' angiogenesis and proliferation. The expression positive rate of bFGF and FGFR-1 may provide an indication of evaluating the histological and malignant degree of the tumor.展开更多
OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in nor...OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in normal children and adolescents, GHD children and short-stature children without GHD. RESULTS: Serum level of IGFBP-3 in 129 children with untreated GHD and with no pubertal development was 1.6 +/- 0.9 mg/L, which was less than that in normal group of the same age, but overlapped with the normal children in Tanner stage I. After six-month treatment with recombinant human growth hormone (rhGH), serum level of IGFBP-3 in 59 GHD significantly increased from 1.3 +/- 0.7 mg/L to 2.7 +/- 0.9 mg/L, accompanied by an increase of body heights, growth velocities and serum level of IGF-1. Serum level of IGFBP-3 in 55 short-stature children without GHD was 3.3 +/- 2.2 mg/L, which was not significantly different from that in normal group. CONCLUSION: Serum IGFBP-3 level can reflect the status of GH secretion in children with GHD and is a useful marker for differential diagnosis of GHD.展开更多
基金supported by grants from Jiangsu Commission of Health,No.Z2021086(to XL)Science and Technology Program of Suzhou,Nos.SYSD2020008(to XL),SKYD2022012(to XL)+1 种基金Suzhou Municipal Health Commission,No.KJXW2020058(to XL)Science and Technology Program of Zhangjiagang,No.ZKS2018(to XL)。
文摘Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a regulator of iron and reactive oxygen species homeostasis.The relationship between heme oxygenase-1and ferroptosis remains controve rsial.In this study,we used a spinal co rd injury rat model to show that the levels of fibroblast growth factor 21 in spinal co rd tissue decreased after spinal cord injury.In addition,there was a significant aggravation of ferroptosis and a rapid increase in heme oxygenase-1 expression after spinal cord injury.Furthe r,heme oxygenase-1 aggravated fe rroptosis after spinal cord injury,while fibroblast growth factor 21 inhibited fe rroptosis by downregulating heme oxygenase-1.Thus,the activation of fibroblast growth factor 21 may provide a potential treatment for spinal co rd injury.These findings could provide a new potential mechanistic explanation for fibroblast growth factor 21 in the treatment of spinal cord injury.
基金supported by grants from National Natural Science Foundation of China(81670559)Key Research and Development Project of Shanxi Province(201603D421023)+2 种基金Youth Fund of Shanxi Medical University(02201514)Graduate Student Education Innovation Project of Shanxi(2016BY077)Youth Fund of Ap-plied Basic Research Program of Shanxi(201701D221175)
文摘Background: Previous research suggested that insulin-like growth factor binding protein related protein 1(IGFBPrP1), as a novel mediator, contributes to hepatic fibrogenesis. Matrix metalloproteinases(MMP) and tissue inhibitors of metalloproteinases(TIMP) play an essential role in hepatic fibrogenesis by regulating homeostasis and remodeling of the extracellular matrix(ECM). However, the interaction between IGFBPrP1 and MMP/TIMP is not clear. The present study was to knockdown IGFBPrP1 to investigate the correlation between IGFBPrP1 and MMP/TIMP in hepatic fibrosis. Methods: Hepatic fibrosis was induced by thioacetamide(TAA) in mice. Knockdown of IGFBPrP1 expression by ultrasound-targeted microbubble destruction-mediated CMB-shRNA-IGFBPrP1 delivery, or inhibition of the Hedgehog(Hh) pathway by cyclopamine treatment, was performed in TAA-induced liver fibrosis mice. Hepatic fibrosis was determined by hematoxylin and eosin and Sirius red staining. Hepatic expression of IGFBPrP1, α-smooth muscle actin( α-SMA), transforming growth factor β 1(TGF β1), collagen I, MMPs/TIMPs, Sonic Hedgehog(Shh), and glioblastoma family transcription factors(Gli1) were investigated by immunohistochemical staining and Western blotting analysis. Results: We found that hepatic expression of IGFBPrP1, TGF β1, α-SMA, and collagen I were increased longitudinally in mice with TAA-induced hepatic fibrosis, concomitant with MMP2/TIMP2 and MMP9/TIMP1 imbalance and Hh pathway activation. Knockdown of IGFBPrP1 expression, or inhibition of the Hh pathway, reduced the hepatic expression of IGFBPrP1, TGF β1, α-SMA, and collagen I and re-established MMP2/TIMP2 and MMP9/TIMP1 balance. Conclusions: Our findings suggest that IGFBPrP1 knockdown attenuates liver fibrosis by re-establishing MMP2/TIMP2 and MMP9/TIMP1 balance, concomitant with the inhibition of hepatic stellate cell activation, down-regulation of TGF β1 expression, and degradation of the ECM. Furthermore, the Hh pathway mediates IGFBPrP1 knockdown-induced attenuation of hepatic fibrosis through the regulation of MMPs/TIMPs balance.
基金Supported by the National Natural Science Foundation of China,No.61802350
文摘BACKGROUND Studies have shown that insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)plays critical roles in the genesis and development of human cancers.AIM To investigate the clinical significance and role of IGF2BP1 in pancreatic cancer.METHODS Expression levels of IGF2BP1 and microRNA-494(miR-494)were mined based on Gene Expression Omnibus datasets and validated in both clinical samples and cell lines by quantitative real-time polymerase chain reaction and Western blot.The relationship between IGF2BP1 expression and clinicopathological factors of pancreatic cancer patients was analyzed.The effect and mechanism of IGF2BP1 on pancreatic cancer cell proliferation were investigated in vitro and in vivo.Analyses were performed to explore underlying mechanisms of IGF2BP1 upregulation in pancreatic cancer and assays were carried out to verify the posttranscriptional regulation of IGF2BP1 by miR-494.RESULTS We found that IGF2BP1 was upregulated and associated with a poor prognosis in pancreatic cancer patients.We showed that downregulation of IGF2BP1 inhibited pancreatic cancer cell growth in vitro and in vivo via the AKT signaling pathway.Mechanistically,we showed that the frequent upregulation of IGF2BP1 was attributed to the downregulation of miR-494 expression in pancreatic cancer.Furthermore,we discovered that reexpression of miR-494 could partially abrogate the oncogenic role of IGF2BP1.CONCLUSION Our results revealed that upregulated IGF2BP1 promotes the proliferation of pancreatic cancer cells via the AKT signaling pathway and confirmed that the activation of IGF2BP1 is partly due to the silencing of miR-494.
基金Supported by the Ministry of Education,Culture,Sports,Science,and Technology and from the Ministry of Health,Labour and Welfare,Japan
文摘To assess the relationship between serum levels of insulin-like growth factor-1 (IGF1)/IGF-binding protein-3 (IGFBP3) and the risk of esophageal carcinoma.METHODSWe assessed the relationship between the serum levels of these molecules and the risk of esophageal cancer in a prospective, nested case-control study of participants from the Japan Collaborative Cohort Study. A baseline survey was conducted from 1988 to 1990. Of the 110585 enrolled participants, 35% donated blood samples. Those who had been diagnosed with esophageal cancer were considered cases for nested case-control studies. A conditional logistic model was used to estimate odds ratios for the incidence of esophageal cancer associated with serum IGF1 and IGFBP3 levels.RESULTSThirty-one cases and 86 controls were eligible for the present assessment. The molar ratio of IGF1/IGFBP3, which represents the free and active form of IGF1, was not correlated with the risk of esophageal carcinoma. A higher molar difference between IGFBP3 and IGF1, which estimates the free form of IGFBP3, was associated with a decreased risk of esophageal carcinoma (P = 0.0146), and people in the highest tertile had the lowest risk (OR = 0.107, 95%CI: 0.017-0.669). After adjustment for body mass index, tobacco use, and alcohol intake, the molar difference of IGFBP3-IGF1 was inversely correlated with the risk of esophageal carcinoma (P = 0.0150).CONCLUSIONThe free form of IGFBP3, which is estimated by this molar difference, may be inversely associated with esophageal cancer incidence.
基金supported by a grant from the Shanxi Province Foundation for Returness(2012-4)
文摘BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGF beta 1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGF beta 1 or IGFBPrP1 and inhibited TGF beta 1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of a-smooth muscle actin (alpha-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGF beta 1 gene (AdTGF beta 1) induced IGFBPrP1 expression while that of alpha-SMA, collagen I, fibronectin, and TGF beta 1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGF beta 1, alpha-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGF beta 1 expression reduced the IGFBPrP1-stimulated expression of alpha-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGF beta 1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGF beta 1-depedent manner, and may act as an upstream regulatory factor of TGF beta 1 in the Smad pathway.
基金Scientific Research Foundation of Liaoning Provincial Education Department for Higher Education Institutions, No.05L442
文摘BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJECTIVE: To investigate the regulatory effects of basic fibroblast growth factor (bFGF) on cerebral neuronal CREB expression following ischemia/reperfusion injury. DESIGN, TIME AND SETTING: An immunohistochemical detection experiment was performed at the Department of Anatomy, Shenyang Medical College, between October 2006 and April 2008. MATERIALS: A total of 60 healthy, adult, Wistar rats were randomly divided into three groups: sham-operated (n =12), ischemia/reperfusion (n = 24), and bFGF-treated (n = 24). Rabbit anti-rat CREB (1: 100) and biotin labeled goat anti-rabbit IgG were purchased from the Wuhan Boster Company, China. MetaMorph-evolution MP5.0-BX51 microscopy imaging system was provided by China Medical University, China. METHODS: Rat models of cerebral ischemia/reperfusion injury were developed using the suture method for right middle cerebral artery occlusion. Two-hour ischemia was followed by reperfusion. Rats from the bFGF-treated and ischemia/reperfusion groups were intraperitoneally administered endogenous bFGF (500 IU/mL, 2 000 IU/kg) or an equal amount of physiological saline. Rats from the sham-operated group underwent a similar surgical procedure, without induction of ischemia/reperfusion injury and drug administration. MAIN OUTCOME MEASURES: After 48-hour reperfusion, hippocampal and parietal cortical neuronal CREB expression was detected by immunohistochemistry, and the absorbance of hippocampal CREB-positive products was determined using MetaMorph-evolutionMP5.0-BX51 microscopy imaging system. RESULTS: The sham-operated group exhibited noticeable CREB expression in hippocampal and parietal cortical neurons. In the ischemia/reperfusion group, the CREB expression was discrete and neurons were poorly arranged. The bFGF-treated group exhibited increased CREB expression and better neuronal arrangement compared with the ischemia/reperfusion group. The mean absorbance of CREB-immunoreactive products in the hippocampus and parietal cortex was significantly higher in the ischemia/reperfusion group than in the sham-operated group (P 〈 0.05), and significantly higher in the bFGF-treated group than in the ischemia/reperfusion group (P 〈 0.05). CONCLUSION: bFGF significantly upregulates CREB expression in hippocampal and parietal cortical neurons following ischemia/reperfusion injury.
文摘AIM: To investigate the effect of microR NA on insulinlike growth factor binding protein-3(IGFBP-3) and hence on insulin-like growth factor-Ⅱ(IGF-Ⅱ) bioavailability in hepatocellular carcinoma(HCC).METHODS: Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mir Vana mi RNA Isolation Kit. microR NA-17-5p(miR-17-5p) expression was mimicked and antagonized in Hu H-7 cell lines using Hi Per Fect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cD NA followed by quantification of mi R-17-5p and IGFBP-3 expression using Taq Man real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3'UTR of IGFBP-3. Free IGF-Ⅱ protein was measured in transfected Hu H-7 cells using IGF-Ⅱ ELISA kit. RESULTS: Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where mi R-17-5p was extensively underexpressed in HCC tissues(P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients(P = 0.0041) compared to healthy donors. Forcing mi R-17-5p expression in Hu H-7 cell lines showed a significant downregulation of IGFBP-3 mR NA expression(P = 0.0267) and a significant increase in free IGF-Ⅱ protein(P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of mi R-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone(P = 0.0474).CONCLUSION: These data suggest that regulating IGF-Ⅱ bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of miR NAs.
文摘BACKGROUND A twin pregnancy can carry greater risks than singleton pregnancies.About 60 in 100 twin pregnancies result in spontaneous birth before 37 wk,which is associated with several complications in the premature babies.Clinical detection of biomarkers may help to predict the possibility of premature birth so that corresponding interventions can be given to the pregnant women in a timely manner,in order to reduce the risk of preterm birth and improve the outcomes of the newborn infants.AIM To explore the clinical value of transvaginal ultrasound measurement of cervical length combined with insulin-like growth factor binding protein-1(IGFBP-1)hyperphosphorylation in cervical secretions as predictors of preterm delivery in twin pregnancies.METHODS A total of 254 pregnant women with twin pregnancies,who were admitted to Hainan General Hospital and underwent maternity examination,were selected as the study subjects from January 2015 to December 2018.All participants received transvaginal ultrasound measurement of cervical length and phosphorylated IGFBP-1(phIGFBP-1)test between 24 and 34 wk gestation.The pregnancy outcomes were analyzed.RESULTS Of the women with a positive phIGFBP-1 test result,preterm birth rate was higher in those with a cervical length≤25 mm than those with a cervical length>25 mm(all P<0.05).Similarly,in women with a negative phIGFBP-1 test result,preterm birth rate was higher in those with a cervical length≤25 mm than those with a cervical length>25 mm(all P<0.05).The sensitivity,specificity,and positive and negative predictive values of the phIGFBP-1 test combined with the cervical length test were 95.71%,91.21%,95.12%and 92.22%,respectively,for the prediction of preterm birth.CONCLUSION Cervical length combined with phIGFBP-1 tests is of value for the prediction of outcomes of preterm delivery in twin pregnancies.
基金supported by the National Science Council(102-2320-B-324-001),Chinaupported by grants from Taipei Veterans General Hospital(V103E6-001&V104E6-001)by grants(MOST 104-2314-B-010-012-MY3,MOST 105-2314-B-010-013-MY2 and MOST 106-2632-B-324-001)from the Ministry of Science and Technology in Taiwan,China
文摘Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at Ts, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast grow th factor- 1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP- 2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS^+ cells and that the migration of the arginase-1^+ population could be regulated locally. Simultaneous application of MMP in- hibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.
文摘There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined whether the expression of fibroblast growth factor-2 (FGF2) and fibroblast growth factor receptor-1 (FGFR1) protein is altered following chronic stress in an animal model. Rats were exposed to 35 days of chronic unpredictable mild stress, and then tested using open-field and sucrose consumption tests. Compared with the control group, rats in the chronic stress group exhibited obvious depressive-like behaviors, including anhedonia, anxiety and decreased mobility. The results of western blot analysis and immunohistochemical analysis revealed a downregulation of the expression of FGF2 and FGFR1 in the hippocampus of rats, particularly in the CA1, CA3 and dentate gyrus. This decreased expression is in accord with the results of post-mortem studies in humans with major depressive disorder. These findings suggest that FGF2 and FGFR1 proteins participate in the pathophysiology of depressive-like behavior, and may play an important role in the mechanism of chronic stress-induced depression.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia(No.173042 and III41030)
文摘Background:Intensive exercise changes physiological need for glucose and several biochemical pathways responsible for its metabolism response.Among them are those which involve insulin,insulin-like growth factor(IGF-1),and IGF-binding proteins(IGFBPs).Different types and degrees of exercise,as well as an athlete's fitness,may induce a range of responses regarding concentrations and time needed for the alteration.The idea of the work was to find out whether and how insulin/IGF axis responds to additional physical activity in the already trained subjects and if so,is the adaptation potentially beneficial from the aspect of metabolic control.Methods:The effect of 4-week intensive training on campus(preparatory training) on the levels of insulin,IGF-1,and IGFBPs during maximal progressive exercise test(MPET) on a treadmill was compared to the results obtained during MPET conducted after a regular training season of a female elite handball team(n = 17,age:17 ± 1 years,height:171 ± 8 cm,weight:65 ± 8 kg,body mass index:22 ± 1 kg/m^2 at the beginning of the study;there were no significant changes at the end).Serum samples were obtained from players immediately before the test(basal),at the end of the test after reaching the point of maximal oxygen consumption(VO_(2max)),and after recovery.Results:The concentration of insulin decreased at VO_(2max),but remained higher in players after preparatory training(12.2 ± 2.5 m U/L vs.8.9 ± 4.4 m U/L,p = 0.049).The level of IGFBP-1 decreased in players at VO_(2max) in either case of training,but it remained much higher in tests performed after the preparatory regime than before(p = 0.029).Concentrations of IGF-1,IGFBP-2,-3,and-4 did not change significantly.Conclusion:The inverse relation between insulin and IGFBP-1 was lost during MPET,as these 2 molecules changed in the same direction.The results obtained suggest less severe stress-induced depression of insulin and IGFBP-1 after preparatory training.But another metabolic mechanism cannot be excluded,and that is potentially impaired insulin sensitivity resulting in higher level of IGFBP-1.
基金supported by National Natural Science Foundation of China(81502123 and81330081)Natural Science Foundation of Anhui Province(1308085QH130)Anhui Province Nature Science Foundation in University(KJ2014A119)
文摘OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.
文摘Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.
基金Shaanxi Province Science and Technology Gongguan Program, China (No.2011-K14-02-03)
文摘AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-beta 1 (TGF-beta 1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS: After OTFS from passages 4 to 6 47 vitro were induced by TGF-beta 1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the alpha -smooth muscular actin (alpha -SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the alpha -SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS: Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-beta 1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-beta 1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both alpha -SMA and CTGF, while to some extent inhibited that of collagen I. TGF-beta 1 significantly promoted the proteins expressions of alpha -SMA, CTGF and collagen I. After OTFS treated by both TGF-beta 1 and Y-27632, of alpha -SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the alpha -SMA, CTGF and collagen I mRNA in 30, 150, 750 mu mol/L Y-27632 group were statistically significant, compared with those in control group, respectively (alpha -SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I,P=0.003, 0.002, 0.000). CONCLUSION: Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and alpha -SMA whatever OTFS induced by TGF-beta 1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction.
文摘BACKGROUND: Neural stem cell (NSC) survival is closely associated with cell apoptosis in ischemic-hypoxic regions following transplantation. Numerous studies have revealed that X-box binding protein 1 (XBP1) is a transcription factor during endoplasmic reticulum unfolded protein response and is essential for cell survival, differentiation, and anti-apoptotic effects. OBJECTIVE: To determine the effects of the XBP1 gene on NSC proliferation and apoptosis under hypoxic conditions following XBP1 gene transfection into rat embryonic hippocampal NSCs using recombinant adenovirus vector. DESIGN, TIME AND SETTING: In vitro experiments were performed at the Laboratory of Cell Biology of Jilin University and Laboratory of Proteomics, Department of Neurology, Jilin University China from September 2008 to November 2009. MATERIALS: Recombinant adenovirus package XBP1 gene and Ad-XBPl-enhanced green fluorescent protein plasmid (Guangzhou Easywin BioMed Technology, China), rabbit anti-XBP1 and its target gene estrogen receptor degradation-enhancing a-mannosidase-like protein (EDEM) glucose-regulated protein 78 (GRP78), anti-apoptotic molecule Bcl-2 and proapoptotic molecule Bax polyclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and COCI2 (Sigma, St. Louis, MO, USA) were used in the present study. METHODS: Hippocampi from embryonic, Sprague Dawley rats on gestational day 16 were harvested for NSC isolation and cloning, followed by immunofluorescence for Nestin and sub-culturing. The recombinant adenovirus Ad-XBPl-enhanced green fluorescent protein plasmid was transfected into rat embryonic hippocampal NSCs, and then CoCl2 was applied to induce hypoxia. MAIN OUTCOME MEASURES: Cell quantification and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide colorimetric assay were utilized to detect proliferation in XBPl-transfected NSCs for 7 consecutive days. Western blot assay was utilized to quantify XBP1 GRP78, EDEM, Bcl-2, and Bax expression. Flow cytometry was used to measure apoptosis. RESULTS: NSC proliferation was significantly enhanced following XBP1 gene transfection (P 〈 0.05). Under hypoxic conditions, GRP78, EDEM, and Bcl-2 levels increased, but Bax levels decreased. In addition, NSC apoptosis decreased following transfection (P 〈 0.05). CONCLUSION: The XBP1 gene was successfully transfected into rat embryonic hippocampal NSCs using a recombinant adenovirus vector. NSC proliferation following transfection, as well as anti-apoptotic effects under hypoxia, was significantly increased.
基金Science and Technology Plan Program of Social Development of Guangdong Science and Technology Department in 2007,No.73127
文摘BACKGROUND: Spleen deficiency in traditional Chinese medicine refers to the functional disorder of spleen, pancreas, intestines, and nervous system in modern medicine. OBJECTIVE; To test whether electro-acupuncture could alter basic fibroblast growth factor (bFGF) protein and mRNA expression in the hippocampal dentate gyrus of spleen deficiency rats. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo animal experiment was performed at the National LeveI-B Laboratory of Clinical Cell Molecule and Biology in Shenzhen Hospital of Traditional Chinese Medicine, between March and November in 2008. MATERIALS: Reserpine injection was produced by Guangdong Bangmin Pharmaceutical Co. Rhubarb extract granule preparation was produced by Guangdong Yifang Pharmaceutical. Huanqiu Brand sterile acupuncture pin was provided by Suzhou Acupuncture Supplies, China. Huatuo Brand electroacupuncture instrument (type SDZ-II) was purchased from Suzhou Medical Appliance Factory, China. METHODS: A total of 96 male Sprague Dawley rats were randomly assigned to control (n = 32) and induction (n = 64) groups. Spleen deficiency was induced via intraperitoneal injection of reserpine and intragastric administration of rhubarb. The successful models were randomized into two groups: model and electro-acupuncture, with 32 rats in each group. Electro-acupuncture was administered at Zusanfi (ST 36) and Sanyinjiao (SP 6) acupoints using a condensation wave and rarefaction (condensation wave 15 Hz) at a strength of 6-15 V for 20 minutes, once per day. The appearance of a slight shiver in the corresponding locus was taken as the standard. According to electro- acupuncture time points, each group was assigned to four subgroups at 7, 14, 28, and 49 days, respectively, with eight rats in each subgroup. Immunohistochemical staining, image analysis, and reverse-transcription polymerase chain reaction were performed at different time points. MAIN OUTCOME MEASURES: bFGF protein and mRNA expression in the hippocampal dentate gyrus of spleen deficiency rats. RESULTS: After 7 days of electro-acupuncture therapy, bFGF protein and mRNA expression significantly increased compared with the model and control groups (P 〈 0.05). After 14 days, bFGF protein and mRNA expression decreased until 28 days, where levels were then equal to the model group and greater than the control group (P 〈 0.05). After 49 days, the above indices remained increased in the electro-acupuncture group compared to the model and control groups (P 〈 0.05). CONCLUSION: Continuous electro-acupuncture maintained a high level of bFGF protein and mRNA expression in the hippocampal dentate gyrus of spleen deficiency rats.
基金Supported by National Natural Sciences Foundation of China,No. 81001067the Ministry of Science and Technology International Cooperation Project, No. 2010DFA31870the AstraZeneca Special Research Foundation for Targeted Therapy of the Wu Jieping Medical Foundation, No. 320.6700.09068
文摘AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC 50 ) and reversal index (IC 50 in experimental group/IC 50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC 50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/ OXA/T cells, in which FGFR2 was silenced by FGFR2 shRNA. In the examined HepG2 cells, the FGFR2, p-ERK1/2 and ERCC1 expression levels demonstrated increasing trends in the OXA group and OXA + FGF7 group. Compared with the OXA group and OXA + FGF7 group, the FGFR2, p-ERK1/2, and ERCC1 expression levels were significantly lower in the OXA + emodin group, and these differences were statistically significant. In the HepG2/OXA/T cell line that was transfected with FGFR2 shRNA, the FGFR2, p-ERK1/2 and ERCC1 expression levels were significantly inhibited, but there were no significant differences in these expression levels among the OXA, OXA + FGF7 and OXA + emodin groups. CONCLUSION: Emodin markedly reversed OXA resistance by enhancing OXA DNA damage in HepG2/OXA cells, and the molecular mechanism was related to the inhibitory effect on ERCC1 expression being mediated by the FGFR2/ERK1/2 signaling pathway.
基金supported by NIH grants AR049510 (TLC) and AR045955 (LDQ)
文摘Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-la (HIF-la) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-la mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-la and FGF23 were co-localized in spindle- shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-la protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-la expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-la inhibitors decreased HIF-la and FGF23 protein accumulation and inhibited HIF-la-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-la consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-la inhibitor. These results show for the first time that HIF-la is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-la activity in TIO contributes to the aberrant FGF23 production in these patients.
文摘The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features and angiogenesis were investigated by means of immunohistochemical technique. The expression of bFGF and FGFR-1 was detected by antibody of bFGF or FGFR-1. The tumors' angiogenesis was evaluated by microvascular density (MVD) and, which was observed by use of CD34-antibody immunohistochemically. The results showed that there were varied degrees of the expression of bFGF and FGFR-1 proteins in meningiomas. The expression was correlated with the tumors' histological characters and angiogenesis. It was concluded that bFGF and FGFR-1 might play important roles in meningiomas' angiogenesis and proliferation. The expression positive rate of bFGF and FGFR-1 may provide an indication of evaluating the histological and malignant degree of the tumor.
文摘OBJECTIVE: To study the value of serum insulin-like growth factor binding protein-3 (IGFBP-3) levels in differential diagnosis of growth hormone deficiency (GHD). METHODS: To measure serum IGFBP-3 levels by RIA in normal children and adolescents, GHD children and short-stature children without GHD. RESULTS: Serum level of IGFBP-3 in 129 children with untreated GHD and with no pubertal development was 1.6 +/- 0.9 mg/L, which was less than that in normal group of the same age, but overlapped with the normal children in Tanner stage I. After six-month treatment with recombinant human growth hormone (rhGH), serum level of IGFBP-3 in 59 GHD significantly increased from 1.3 +/- 0.7 mg/L to 2.7 +/- 0.9 mg/L, accompanied by an increase of body heights, growth velocities and serum level of IGF-1. Serum level of IGFBP-3 in 55 short-stature children without GHD was 3.3 +/- 2.2 mg/L, which was not significantly different from that in normal group. CONCLUSION: Serum IGFBP-3 level can reflect the status of GH secretion in children with GHD and is a useful marker for differential diagnosis of GHD.