There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined w...There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined whether the expression of fibroblast growth factor-2 (FGF2) and fibroblast growth factor receptor-1 (FGFR1) protein is altered following chronic stress in an animal model. Rats were exposed to 35 days of chronic unpredictable mild stress, and then tested using open-field and sucrose consumption tests. Compared with the control group, rats in the chronic stress group exhibited obvious depressive-like behaviors, including anhedonia, anxiety and decreased mobility. The results of western blot analysis and immunohistochemical analysis revealed a downregulation of the expression of FGF2 and FGFR1 in the hippocampus of rats, particularly in the CA1, CA3 and dentate gyrus. This decreased expression is in accord with the results of post-mortem studies in humans with major depressive disorder. These findings suggest that FGF2 and FGFR1 proteins participate in the pathophysiology of depressive-like behavior, and may play an important role in the mechanism of chronic stress-induced depression.展开更多
BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate si...BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.展开更多
AIM: To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanis...AIM: To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanisms of aFGF.METHODS: One hundred and eight Wistar rats were randomly divided into sham-operated control group (C)(n = 6), intestinal ischemia group (I) (n = 6), aFGF treatment group (A) (n = 48) and intestinal ischemia reperfusion group (R) (n = 48). In group I, the animals were killed after 45 min of superior mesenteric artery (SMA) occlusion, while in groups R and A, the rats sustained 45 min of SMA occlusion and were then treated with normal saline and aFGF, respectively, sustained 15 min, 30 min, 1, 2, 6, 12, 24, or 48 h of reperfusion, respectively. In group C, SMA was separated, but without occlusion. Apoptosis in intestinal villus was determined with terminal deoxynucleotidyl transferase mediated dUTP-biotin nickend labeling technique (TUNEL). Intestinal tissue samples were taken not only for detection of bax and bcl-2 gene expression by RT-PCR, but also for detection of bax and bcl 2 protein expression and distribution by immunohistochemical analysis.RESULTS: The rat survival rates in aFGF treated group were higher than group R (P<0.05) and the improvement of intestinal histological structures was observed at 2, 6, and 12 h after the reperfusion in group A compared with group R. The apoptotic rates were (41.17±3.49)%, (42.83±5.23)% and (53.33±6.92)% at 2, 6 and 12 h after reperfusion, respectively in group A, apparently less than those of group R at matched time points (50.67±6.95, 54.17±7.86, 64.33±6.47, respectively) (P<0.05). The bax gene transcription and translation were significantly decreased in group A vs group R, while mRNA and protein contents of Bcl-2 in group A were obviously higher than those in groupR during 2-12 h period after reperfusion.CONCLUSION: The changes in histological structure and the increment of apoptotic rate indicated that the intestinal barrier was damaged after intestinal I/R injury, whilst intravenous aFGF could alleviate apoptosis induced by ischemia and reperfusion in rat intestinal tissues, in which genes of bax and bcl-2 might play important roles.展开更多
BACKGROUND: Both animal experiments and clinical studies have shown that basic fibroblast growth factor (bFGF) and danshen (Salvia miltiorrhiza) can exhibit protective effects on ischemia-reperfusion cerebral inj...BACKGROUND: Both animal experiments and clinical studies have shown that basic fibroblast growth factor (bFGF) and danshen (Salvia miltiorrhiza) can exhibit protective effects on ischemia-reperfusion cerebral injury. OBJECTIVE: To test whether bFGF and danshen can protect cerebral injury induced by exposure to repeated, high, positive acceleration (+Gz) in an animal model and to analyze the possible mechanisms. DESIGN, TIME AND SETTING: Randomized controlled animal study. The experiment was performed at the Research Center for Molecular Biology, Air-force General Hospital of Chinese PLA from April to August 2000. MATERIALS: A total of 20 clean grade, healthy, Sprague Dawley rats of both genders, weighing (200 ± 15) g, were provided by our experimental animal center. Rats were randomly divided into 5 groups: the control group, +Gz exposure group, bFGF group, danshen group, and saline group, with 4 animals per group. bFGF (Beijing Bailuyuan Biotechnology Co. Ltd.) and danshen solution (Shanghai Zhongxi Pharmaceutical Co. Ltd.) were used. METHODS: All rats were fixed on a rotary arm of a centrifugal apparatus (2 m in radius) with their heads oriented towards the center of the apparatus. Except for rats in the control group, the value of +Gz exposure was +14 Gz with an acceleration rate of 1.5 G/s. The peak force lasted for 45 seconds. +Gz exposure was performed three times with intervals of 30 minutes. Rats in the control group received the same +Gz procedure, but the G value was +1 Gz. Rats in bFGF group and danshen group were intraperitoneally injected with 100 μg/kg bFGF or 15 g/kg danshen solution, respectively, at 30 minutes prior to centrifugation and immediately after centrifugation. Rats in saline group were injected with the same volume of saline. Six hours after exposure, rats were decapitated. One hemisphere was preserved in liquid nitrogen for RNA extraction and the other was processed for apoptosis detection. MAIN OUTCOME MEASURES: mRNA levels of bcl-2 and p53 were measured by semi-quantitative reverse-transcription polymerase chain reaction. Apoptotic cell death was detected by terminal deoxynuleotidyl transferase-mediated dUTP nick end labeling. RESULTS: Changes in mRNA expression of bcl-2 and p53 and apoptotic cells were observed in rat brain six hours after repeated +Gz exposures, bFGF and danshen were able block the changes of bcl-2 and p53 expression and inhibit apoptotic cell death. CONCLUSION: The data suggest that apoptosis and changes in bcl-2 and p53 expression in the rat brain can be induced by repeated +Gz exposures. Apoptosis is, therefore, one of the molecular mechanisms of brain damage induced by repeated +Gz exposures, bFGF and danshen were of the equal potency in preventing brain injury induced by repeated +Gz exposures.展开更多
文摘There is evidence that the expression of members of the fibroblast growth factor (FGF) protein family is altered in post-mortem brains of humans suffering from major depressive disorder. The present study examined whether the expression of fibroblast growth factor-2 (FGF2) and fibroblast growth factor receptor-1 (FGFR1) protein is altered following chronic stress in an animal model. Rats were exposed to 35 days of chronic unpredictable mild stress, and then tested using open-field and sucrose consumption tests. Compared with the control group, rats in the chronic stress group exhibited obvious depressive-like behaviors, including anhedonia, anxiety and decreased mobility. The results of western blot analysis and immunohistochemical analysis revealed a downregulation of the expression of FGF2 and FGFR1 in the hippocampus of rats, particularly in the CA1, CA3 and dentate gyrus. This decreased expression is in accord with the results of post-mortem studies in humans with major depressive disorder. These findings suggest that FGF2 and FGFR1 proteins participate in the pathophysiology of depressive-like behavior, and may play an important role in the mechanism of chronic stress-induced depression.
基金the National Natural Science Foundation of China,No.30371459Science and Technology Development Fund of Shanghai,No.034047
文摘BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity.
基金Supported by the National Basic Science and Development Programme, No. G1999054204the National Natural Science Foundation of China, No. 30170966, 30230370
文摘AIM: To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanisms of aFGF.METHODS: One hundred and eight Wistar rats were randomly divided into sham-operated control group (C)(n = 6), intestinal ischemia group (I) (n = 6), aFGF treatment group (A) (n = 48) and intestinal ischemia reperfusion group (R) (n = 48). In group I, the animals were killed after 45 min of superior mesenteric artery (SMA) occlusion, while in groups R and A, the rats sustained 45 min of SMA occlusion and were then treated with normal saline and aFGF, respectively, sustained 15 min, 30 min, 1, 2, 6, 12, 24, or 48 h of reperfusion, respectively. In group C, SMA was separated, but without occlusion. Apoptosis in intestinal villus was determined with terminal deoxynucleotidyl transferase mediated dUTP-biotin nickend labeling technique (TUNEL). Intestinal tissue samples were taken not only for detection of bax and bcl-2 gene expression by RT-PCR, but also for detection of bax and bcl 2 protein expression and distribution by immunohistochemical analysis.RESULTS: The rat survival rates in aFGF treated group were higher than group R (P<0.05) and the improvement of intestinal histological structures was observed at 2, 6, and 12 h after the reperfusion in group A compared with group R. The apoptotic rates were (41.17±3.49)%, (42.83±5.23)% and (53.33±6.92)% at 2, 6 and 12 h after reperfusion, respectively in group A, apparently less than those of group R at matched time points (50.67±6.95, 54.17±7.86, 64.33±6.47, respectively) (P<0.05). The bax gene transcription and translation were significantly decreased in group A vs group R, while mRNA and protein contents of Bcl-2 in group A were obviously higher than those in groupR during 2-12 h period after reperfusion.CONCLUSION: The changes in histological structure and the increment of apoptotic rate indicated that the intestinal barrier was damaged after intestinal I/R injury, whilst intravenous aFGF could alleviate apoptosis induced by ischemia and reperfusion in rat intestinal tissues, in which genes of bax and bcl-2 might play important roles.
文摘BACKGROUND: Both animal experiments and clinical studies have shown that basic fibroblast growth factor (bFGF) and danshen (Salvia miltiorrhiza) can exhibit protective effects on ischemia-reperfusion cerebral injury. OBJECTIVE: To test whether bFGF and danshen can protect cerebral injury induced by exposure to repeated, high, positive acceleration (+Gz) in an animal model and to analyze the possible mechanisms. DESIGN, TIME AND SETTING: Randomized controlled animal study. The experiment was performed at the Research Center for Molecular Biology, Air-force General Hospital of Chinese PLA from April to August 2000. MATERIALS: A total of 20 clean grade, healthy, Sprague Dawley rats of both genders, weighing (200 ± 15) g, were provided by our experimental animal center. Rats were randomly divided into 5 groups: the control group, +Gz exposure group, bFGF group, danshen group, and saline group, with 4 animals per group. bFGF (Beijing Bailuyuan Biotechnology Co. Ltd.) and danshen solution (Shanghai Zhongxi Pharmaceutical Co. Ltd.) were used. METHODS: All rats were fixed on a rotary arm of a centrifugal apparatus (2 m in radius) with their heads oriented towards the center of the apparatus. Except for rats in the control group, the value of +Gz exposure was +14 Gz with an acceleration rate of 1.5 G/s. The peak force lasted for 45 seconds. +Gz exposure was performed three times with intervals of 30 minutes. Rats in the control group received the same +Gz procedure, but the G value was +1 Gz. Rats in bFGF group and danshen group were intraperitoneally injected with 100 μg/kg bFGF or 15 g/kg danshen solution, respectively, at 30 minutes prior to centrifugation and immediately after centrifugation. Rats in saline group were injected with the same volume of saline. Six hours after exposure, rats were decapitated. One hemisphere was preserved in liquid nitrogen for RNA extraction and the other was processed for apoptosis detection. MAIN OUTCOME MEASURES: mRNA levels of bcl-2 and p53 were measured by semi-quantitative reverse-transcription polymerase chain reaction. Apoptotic cell death was detected by terminal deoxynuleotidyl transferase-mediated dUTP nick end labeling. RESULTS: Changes in mRNA expression of bcl-2 and p53 and apoptotic cells were observed in rat brain six hours after repeated +Gz exposures, bFGF and danshen were able block the changes of bcl-2 and p53 expression and inhibit apoptotic cell death. CONCLUSION: The data suggest that apoptosis and changes in bcl-2 and p53 expression in the rat brain can be induced by repeated +Gz exposures. Apoptosis is, therefore, one of the molecular mechanisms of brain damage induced by repeated +Gz exposures, bFGF and danshen were of the equal potency in preventing brain injury induced by repeated +Gz exposures.