期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair 被引量:4
1
作者 Xin Liu Yuxiang Sun +7 位作者 Bo Chen Yan Li Peng Zhu Peng Wang Sen Yan Yao Li Fang Yang Ning Gu 《Bioactive Materials》 SCIE 2022年第1期126-143,共18页
Although with the good biological properties,silk fibroin(SF)is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties.It is necessary to... Although with the good biological properties,silk fibroin(SF)is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties.It is necessary to construct a multifunctional composite scaffold based on SF.In this study,a novel magnetic SF scaffold(MSFCs)was prepared by an improved infiltration method.Compared with SF scaffold(SFC),MSFCs were found to have better crystallinity,magnetocaloric properties,and mechanical strength,which was ascribed to the rational introduction of iron-based magnetic nanoparticles(MNPs).Moreover,in vivo and in vitro experiments demonstrated that the degradation of MSFCs was significantly extended.The mechanism of delayed degradation was correlated with the dual effect that was the newly formed hydrogen bonds between SFC and MNPs and the complexing to tyrosine(Try)to inhibit hydrolase by internal iron atoms.Besides,theβ-crystallization of protein in MSFCs was increased with the rise of iron concentration,proving the beneficial effect after MNPS doped.Furthermore,although macrophages could phagocytose the released MNPs,it did not affect their function,and even a reasonable level might cause some cytokines to be upregulated.Finally,in vitro and in vivo studies demonstrated that MSFCs showed excellent biocompatibility and the growth promotion effect on CD34-labeled vascular endothelial cells(VECs).In conclusion,we confirm that the doping of MNPs can significantly reduce the degradation of SFC and thus provide an innovative perspective of multifunctional biocomposites for tissue engineering. 展开更多
关键词 Silk fibroin scaffold Iron based magnetic nanoparticles Composite scaffold Extended degradation Vascular tissue engineering
原文传递
VE TPGS-Loaded Silk Fibroin / Hydroxybutyl Chitosan Nanofibrous Scaffolds for Skin Care Application
2
作者 周远南 梁文浩 +4 位作者 阮标鹏 姜芳 王维汉 张葵花 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期533-537,共5页
Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene gly... Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds. 展开更多
关键词 vitamin Etocopherol polyethylene glycol 1000 succinate(VE TPGS) silk fibroin(SF) /hydroxybutyl chitosan(HBC) nanofibrous scaffolds resistance to oxidation biocompatibility
下载PDF
Cell-derived extracellular matrix-coated silk fibroin scaffold for cardiogenesis of brown adipose stem cells through modulation of TGF-β pathway 被引量:2
3
作者 Wei Liu Yanfeng Sun +5 位作者 Xiaohui Dong Qi Yin Huimin Zhu Siwei Li Jin Zhou Changyong Wang 《Regenerative Biomaterials》 SCIE 2020年第4期403-412,共10页
The cell-derived extracellular matrix(ECM)-modified scaffolds have advantages of mimic tissue specificity and been thought to better mimic the native cellular microenvironment in vitro.ECM derived from cardiac fibrobl... The cell-derived extracellular matrix(ECM)-modified scaffolds have advantages of mimic tissue specificity and been thought to better mimic the native cellular microenvironment in vitro.ECM derived from cardiac fibroblasts(CFs)are considered as key elements that provide a natural cell growth microenvironment and change the fate of cardiomyocytes(CMs).Here,a new hybrid scaffold is designed based on silk fibroin(SF)scaffold and CFs-derived ECM.CFs were seeded on the SF scaffold for 10days culturing and decellularized to produce CFs-derived ECM-coated SF scaffold.The results showed that the cell-derived ECM-modified silk fibroin scaffold material contained collagen,laminin,fibronectin and other ECM components with myocardial-like properties.Further to explore its effects on brown adipose stem cells(BASCs)differentiation into CMs.We found that the CFderived ECM-coated scaffold also increased the expression of CM-specific proteins(e.g.cardiac troponin T and α-actinin)of BASCs.Notably,the b1-integrin-dependent transforming growth factor-β1 signaling pathway was also involved in the regulation of CF-derived ECM by promoting the differentiation of BASCs into CMs.Overall,these findings provide insights into the bionic manufacturing of engineered cardiac tissues(ECTs)and establish a theoretical basis for the construction of ECTs. 展开更多
关键词 cell-derived extracellular matrix cardiac fibroblasts brown adipose stem cells silk fibroin scaffolds
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部