A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a dest...A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a destructive quantum interference relevant to a two-photon resonance emerges in EIT-based atoms interacting with both control and probe fields, an EIT-based periodic layered medium exhibits a flexible frequency-sensitive optical response, where a very small variation in the probe frequency can lead to a drastic variation in reflectance and transmittance. The present EIT-based periodic layered structure can result in controllable optical processes that depend sensitively on the external control field. The tunable and sensitive optical response induced by the quantum interference of a multi-level atomic system can be applied in the fabrication of new photonic and quantum optical devices. This material will also open a good perspective for the application of such designs in several new fields, including photonic microcircuits or integrated optical circuits.展开更多
基金supported by the Taiwan Science Council (Nos.NSC 99-2811-M-216-001 and NSC 99-2112-M-216-002)the National Natural Science Foundation of China (Nos.60990320 and 60990322)+1 种基金the Natural Science Foundation of Zhejiang Province in China (No.Y6100280)the Fundamental Research Funds for the Central Universities of China
文摘A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a destructive quantum interference relevant to a two-photon resonance emerges in EIT-based atoms interacting with both control and probe fields, an EIT-based periodic layered medium exhibits a flexible frequency-sensitive optical response, where a very small variation in the probe frequency can lead to a drastic variation in reflectance and transmittance. The present EIT-based periodic layered structure can result in controllable optical processes that depend sensitively on the external control field. The tunable and sensitive optical response induced by the quantum interference of a multi-level atomic system can be applied in the fabrication of new photonic and quantum optical devices. This material will also open a good perspective for the application of such designs in several new fields, including photonic microcircuits or integrated optical circuits.