We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor...Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.展开更多
We experimentally investigate the double ionization pulses. The total kinetic energy release of the two of molecular hydrogen subjected to ultrashort intense laser coincident H+ ions, which provides a diagnosis of di...We experimentally investigate the double ionization pulses. The total kinetic energy release of the two of molecular hydrogen subjected to ultrashort intense laser coincident H+ ions, which provides a diagnosis of different processes to double ionization of H2, is measured for two different pulse durations, i.e., 25 and 5 fs, and various laser intensities. It is found that, for the long pulse duration (i.e., 25 fs), the double ionization occurs mainly via two processes, i.e., the charge resonance enhanced ionization and recollision-induced double ionization. Moreover, the contributions from these two processes can be significantly modulated by changing the laser intensity. In contrast, for a few-cycle pulse of 5 fs, only the recollsion-induced double ionization survives, and in particular, this process could be solely induced by the first-return reeollision at appropriate laser intensities, providing an efficient way to probe the sub-laser-cycle molecular dynamics.展开更多
The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic...The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.展开更多
The velocity of the electromagnetic radiation in a perfect dielectric, containing no charges and no conduction currents, is explored and determined on making use of the Lorentz transformations. Besides the idealised b...The velocity of the electromagnetic radiation in a perfect dielectric, containing no charges and no conduction currents, is explored and determined on making use of the Lorentz transformations. Besides the idealised blackbody radiation, whose vacuum propagation velocity is the universal constant c, being this value independent of the observer, there is another behaviour of electromagnetic radiation, we call inertial radiation, which is characterized by an electromagnetic inertial density , and therefore, it happens to be described by a time-like Poynting four-vector field which propagates with velocity . is found to be a relativistic invariant expressible in terms of the relativistic invariants of the electromagnetic field. It is shown that there is a rest frame, where the Poynting vector is equal to zero. Both phase and group velocities of the electromagnetic radiation are evaluated. The wave and eikonal equations for the dynamics of the radiation field are formulated.展开更多
Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much...Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much lower in the deep parts of basins: at a depth of 7000 m, hydrocarbons can accumulate only in rocks with porosity less than 5%. However, in the shallow parts of basins (i.e., depths of around 1000 m), hydrocarbon can accumulate in rocks only when porosity is over 20%. Second, hydrocarbon reservoirs tend to exhibit negative pressures after hydrocarbon accumulation at depth, with a pressure coefficient less than 0.7. However, hydrocarbon reservoirs at shallow depths tend to exhibit high pressure after hydrocarbon accumulation. Third, deep reservoirs tend to exhibit characteristics of oil (-gas)-water inversion, indicating that the oil (gas) accumulated under the water. However, the oil (gas) tends to accumulate over water in shallow reservoirs. Fourth, continuous unconventional tight hydrocarbon reservoirs are distributed widely in deep reservoirs, where the buoyancy force is not the primary dynamic force and the caprock is not involved during the process of hydrocarbon accumulation. Conversely, the majority of hydrocarbons in shallow regions accumulate in traps with complex structures. The results of this study indicate that two dynamic boundary conditions are primarily responsible for the above phenomena: a lower limit to the buoyancy force and the lower limit of hydrocarbon accumulation overall, corresponding to about 10%-12% porosity and irreducible water saturation of 100%, respectively. These two dynamic boundary conditions were used to divide sedimentary basins into three different dynamic fields of hydrocarbon accumulation: the free fluid dynamic field, limit fluid dynamic field, and restrain fluid dynamic field. The free fluid dynamic field is located between the surface and the lower limit of the buoyancy force, such that hydrocarbons in this field migrate and accumulate under the influence of, for example, the buoyancy force, pressure, hydrodynamic force, and capillary force. The hydrocarbon reservoirs formed are characterized as "four high," indicating that they accumulate in high structures, are sealed in high locations, migrate into areas of high porosity, and are stored in reservoirs at high pressure. The basic features of distribution and accumulation in this case include hydrocarbon migration as a result of the buoyancy force and formation of a reservoir by a caprock. The limit fluid dynamic field is located between the lower limit of the buoyancy force and the lower limit of hydrocarbon accumulation overall; the hydrocarbon migrates and accumulates as a result of, for example, the molecular expansion force and the capillary force. The hydrocarbon reservoirs formed are characterized as "four low," indicating that hydrocarbons accumulate in low structures, migrate into areas of low porosity, and accumulate in reservoirs with low pressure, and that oil(-gas)-water inversion occurs at low locations. Continuous hydrocarbon accumulation over a large area is a basic feature of this field. The restrain fluid dynamic field is located under the bottom of hydrocarbon accumulation, such that the entire pore space is filled with water. Hydrocarbons migrate as a result of the molecular diffusion force only. This field lacks many of the basic conditions required for formation of hydrocarbon reservoirs: there is no effective porosity, movable fluid, or hydrocarbon accumulation, and potential for hydrocarbon exploration is low. Many conventional hydrocarbon resources have been discovered and exploited in the free fluid dynamic field of shallow reservoirs, where exploration potential was previously considered to be low. Continuous unconventional tight hydrocarbon resources have been discovered in the limit fluid dynamic field of deep reservoirs; the exploration potential of this setting is thought to be tremendous, indicating that future exploration should be focused primarily in this direction.展开更多
Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes th...Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio- temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 Ms8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 Ms9.0 Sumatra earthquake and the 2008 Ms8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichnan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the Ms8.0 Wenchnan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σapp is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro- dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σapp are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and shortterm apparent stress σapp before the Ms8.0 Wenchuan earthquake, the Longmenshan fault zone is in a low stress distribution area, and the relatively high apparent stress is in the peripheral area. These images may show medium and short-term locking phenomena near the seismogenic tectonics of the Ms8.0 Wenchuan earthquake. For example, changes with time of the focal parameter consistency of the sub-blocks in Sichuan and Yunnan Provinces, continual increase of thrust-type earthquakes in the Sichuan-Qinghai block and the appearance of spatial distribution areas of high apparent σapp stress. The work on this aspect was continued after the Ms8.0 Wenchuan earthquake, and the results seem to be shown a clearer relationship between these phenomena and future great earthquakes.展开更多
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL...The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.展开更多
The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about ...The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about 2.95 /100 m by integrating 266 drill-stem test (DST) measurements and comparing with the global average value. The paleogeothermal gradients are calculated from the homogenization temperatures of saline inclusions, which vary both laterally and vertically. The data from sonic logs, well tests and seismic velocities are used to investigate the pressure variations in the study area. The mudstone compaction is classified as three major types: normal compaction and normal pressure, under-compaction and overpressure, and past-compaction and under-overpressure. The current pressure profile is characterized by normal pressure, sight pressure and intense overpressure from top to bottom The faults, unconformity surfaces and interconnecting pores constitute a complex network of vertical and horizontal fluid flows within the depression. The fluid potential energy profiles present a 'double-deck' structure. The depocenters are the area of fluids supply, whereas the slopes and uplifts are the main areas of fluids charge.展开更多
This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarki...This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.展开更多
In order to effectively control the stress and distortion which produced in welding process, the dynamic change laws of displacement field is the most important factor. The characteristics of the welding dynamic displ...In order to effectively control the stress and distortion which produced in welding process, the dynamic change laws of displacement field is the most important factor. The characteristics of the welding dynamic displacement field is high temperature, high strain velocity, thus ordinary methods such as resistance strain gauge or Moiré method can not be used for the measurement of the zone of high temperature. Speckle interference method has the merits of non-contact, resistance to the disturbance of impure lights, high accuracy of measurement (half of wavelength).The paper represents the measurement of dynamic displacement field of argon-arcspot welding, by which it shows that the method of speckle interference is feasible for the measurement of welding dynamic displacement.展开更多
Satellite gravity data fusion with multi-type and huge-amount is one of the hot topics in physical geodesy. After a brief review of dynamic approach, the CHAMP-only and GRACE-only gravity fields by using HL-SST and LL...Satellite gravity data fusion with multi-type and huge-amount is one of the hot topics in physical geodesy. After a brief review of dynamic approach, the CHAMP-only and GRACE-only gravity fields by using HL-SST and LL-SST data from 2003 to 2009 are recovered respectively. An combination strategy of CHAMP and GRACE data by using Helmert variance component estimation (VCE) is proposed based on normal equation level fusion. Three gravity field models with 150° and order by CHAMP-only data, GRACE-only data and combining CHAMP and GRACE data from 2003 to 2009 are recovered. The comparisons between our recovered models and those latest released models were performed. The external accuracy validations using marine gravity anomalies from DTU13 products and height anomalies from GPS/leveling data are also conducted in this paper. The results show that long-term CHAMP data do contribute to the accuracy improvement of gravity field solution. The accuracy of the combined model using CHAMP and GRACE data is better than those of the individuals and comparative to the models published by international groups.展开更多
A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa...A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.展开更多
Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material f...Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources.展开更多
By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Bas...By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Based upon this,a transient numerical simulation method,combining the pressure and velocity,tightly coupled algorithm and SST turbulence model,was used to complete the unsteady numerical simulation of the launch jet dynamics of the new-generation launch vehicles.The numerical simulation results of the launch jet dynamics,for the new-generation launch vehicles,demonstrated that despite the complex structure of the launch platform,the jet flows of the core stage and booster engines were generally smoothly channeled into the double deflecting trench through the launch platform’s diversion hole at the initial stage of ignition.After the lift off,the jet flows of the core stage and the booster engines began to affect and ablate the grillage-shaped beam and the adjoined surface of the launch platform adjacent to the booster engines.At a higher altitude after lift off,it could be seen for the new-generation launch vehicles the ablation range of high temperature and high-speed jet flows on the launch platform further expanded,which would have a severe ablation effect on the fuel filling tower near the booster engines and even all the support arms.The numerical simulation of launch jet dynamics also established that the jet flows embers at the bottom of the core stage rocket body continued to be affected for an extended period of time due to the large number of nozzles in the new-generation launch vehicles engine and the weak suction effect of the jet flows in the core-stage engines.展开更多
We discuss quantum fluctuation in excited states (named thermo number states) of mesoscopic LC circuits at a finite temperature. By introducing the coherent thermo state into the thermo field dynamics pioneered by U...We discuss quantum fluctuation in excited states (named thermo number states) of mesoscopic LC circuits at a finite temperature. By introducing the coherent thermo state into the thermo field dynamics pioneered by Umezawa and using the natural representation of thermo squeezing operator we can concisely derive the fluctuation. The result shows that the noise becomes larger when either temperature or the excitation number increases.展开更多
The hydrodynamic performance of a three-dimensional finite-length rotating cylinder is studied by means of a physical tank and numerical simulation.First,according to the identified influencing factors,a hydrodynamic ...The hydrodynamic performance of a three-dimensional finite-length rotating cylinder is studied by means of a physical tank and numerical simulation.First,according to the identified influencing factors,a hydrodynamic performance test of the rotating cylinder was carried out in a circulating water tank.In order to explore the changing law of hydrodynamic performance with these factors,a particle image velocimetry device was used to monitor the flow field.Subsequently,a computational field dynamics numerical simulation method was used to simulate the flow field,followed by an analysis of the effects of speed ratio,Reynolds number,and aspect ratio on the flow field.The results show that the lift coefficient and drag coefficient of the cylinder increase first and then decrease with the increase of the rotational speed ratio.The trend of numerical simulation and experimental results is similar.展开更多
Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number state...Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.展开更多
Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamilt...Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.展开更多
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc...The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.展开更多
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金Supported by the National Key R&D Program of China under Grant No 2016YFB0400104
文摘Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922201the National Natural Science Foundation of China under Grant Nos 11304365,11374329 and 11334009
文摘We experimentally investigate the double ionization pulses. The total kinetic energy release of the two of molecular hydrogen subjected to ultrashort intense laser coincident H+ ions, which provides a diagnosis of different processes to double ionization of H2, is measured for two different pulse durations, i.e., 25 and 5 fs, and various laser intensities. It is found that, for the long pulse duration (i.e., 25 fs), the double ionization occurs mainly via two processes, i.e., the charge resonance enhanced ionization and recollision-induced double ionization. Moreover, the contributions from these two processes can be significantly modulated by changing the laser intensity. In contrast, for a few-cycle pulse of 5 fs, only the recollsion-induced double ionization survives, and in particular, this process could be solely induced by the first-return reeollision at appropriate laser intensities, providing an efficient way to probe the sub-laser-cycle molecular dynamics.
基金the National Natural Science Foun-dation of China(Grant Nos.12204074,12222402,92365101,and 12347101)the Natural Science Foundation of Chong-ging(Grant No.CSTB2023NSCQ-JQX0024).
文摘The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.
文摘The velocity of the electromagnetic radiation in a perfect dielectric, containing no charges and no conduction currents, is explored and determined on making use of the Lorentz transformations. Besides the idealised blackbody radiation, whose vacuum propagation velocity is the universal constant c, being this value independent of the observer, there is another behaviour of electromagnetic radiation, we call inertial radiation, which is characterized by an electromagnetic inertial density , and therefore, it happens to be described by a time-like Poynting four-vector field which propagates with velocity . is found to be a relativistic invariant expressible in terms of the relativistic invariants of the electromagnetic field. It is shown that there is a rest frame, where the Poynting vector is equal to zero. Both phase and group velocities of the electromagnetic radiation are evaluated. The wave and eikonal equations for the dynamics of the radiation field are formulated.
基金supported by the National Basic Research Program of China (Grant No: 2011CB201100)
文摘Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much lower in the deep parts of basins: at a depth of 7000 m, hydrocarbons can accumulate only in rocks with porosity less than 5%. However, in the shallow parts of basins (i.e., depths of around 1000 m), hydrocarbon can accumulate in rocks only when porosity is over 20%. Second, hydrocarbon reservoirs tend to exhibit negative pressures after hydrocarbon accumulation at depth, with a pressure coefficient less than 0.7. However, hydrocarbon reservoirs at shallow depths tend to exhibit high pressure after hydrocarbon accumulation. Third, deep reservoirs tend to exhibit characteristics of oil (-gas)-water inversion, indicating that the oil (gas) accumulated under the water. However, the oil (gas) tends to accumulate over water in shallow reservoirs. Fourth, continuous unconventional tight hydrocarbon reservoirs are distributed widely in deep reservoirs, where the buoyancy force is not the primary dynamic force and the caprock is not involved during the process of hydrocarbon accumulation. Conversely, the majority of hydrocarbons in shallow regions accumulate in traps with complex structures. The results of this study indicate that two dynamic boundary conditions are primarily responsible for the above phenomena: a lower limit to the buoyancy force and the lower limit of hydrocarbon accumulation overall, corresponding to about 10%-12% porosity and irreducible water saturation of 100%, respectively. These two dynamic boundary conditions were used to divide sedimentary basins into three different dynamic fields of hydrocarbon accumulation: the free fluid dynamic field, limit fluid dynamic field, and restrain fluid dynamic field. The free fluid dynamic field is located between the surface and the lower limit of the buoyancy force, such that hydrocarbons in this field migrate and accumulate under the influence of, for example, the buoyancy force, pressure, hydrodynamic force, and capillary force. The hydrocarbon reservoirs formed are characterized as "four high," indicating that they accumulate in high structures, are sealed in high locations, migrate into areas of high porosity, and are stored in reservoirs at high pressure. The basic features of distribution and accumulation in this case include hydrocarbon migration as a result of the buoyancy force and formation of a reservoir by a caprock. The limit fluid dynamic field is located between the lower limit of the buoyancy force and the lower limit of hydrocarbon accumulation overall; the hydrocarbon migrates and accumulates as a result of, for example, the molecular expansion force and the capillary force. The hydrocarbon reservoirs formed are characterized as "four low," indicating that hydrocarbons accumulate in low structures, migrate into areas of low porosity, and accumulate in reservoirs with low pressure, and that oil(-gas)-water inversion occurs at low locations. Continuous hydrocarbon accumulation over a large area is a basic feature of this field. The restrain fluid dynamic field is located under the bottom of hydrocarbon accumulation, such that the entire pore space is filled with water. Hydrocarbons migrate as a result of the molecular diffusion force only. This field lacks many of the basic conditions required for formation of hydrocarbon reservoirs: there is no effective porosity, movable fluid, or hydrocarbon accumulation, and potential for hydrocarbon exploration is low. Many conventional hydrocarbon resources have been discovered and exploited in the free fluid dynamic field of shallow reservoirs, where exploration potential was previously considered to be low. Continuous unconventional tight hydrocarbon resources have been discovered in the limit fluid dynamic field of deep reservoirs; the exploration potential of this setting is thought to be tremendous, indicating that future exploration should be focused primarily in this direction.
基金Scientific and Technology project(200808053)National Key Basic Research 973b project support
文摘Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio- temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 Ms8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 Ms9.0 Sumatra earthquake and the 2008 Ms8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichnan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the Ms8.0 Wenchnan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σapp is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro- dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σapp are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and shortterm apparent stress σapp before the Ms8.0 Wenchuan earthquake, the Longmenshan fault zone is in a low stress distribution area, and the relatively high apparent stress is in the peripheral area. These images may show medium and short-term locking phenomena near the seismogenic tectonics of the Ms8.0 Wenchuan earthquake. For example, changes with time of the focal parameter consistency of the sub-blocks in Sichuan and Yunnan Provinces, continual increase of thrust-type earthquakes in the Sichuan-Qinghai block and the appearance of spatial distribution areas of high apparent σapp stress. The work on this aspect was continued after the Ms8.0 Wenchuan earthquake, and the results seem to be shown a clearer relationship between these phenomena and future great earthquakes.
基金supported by the National Natural Science Foundation of China(40805004, 40705039 and 90715031)the "Mini-projecton detailed survey and evaluation of wind energy resources"supported by National Climate Center of Chinese Meteoro-logical Administration (CWERA2010002)
文摘The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.
基金he Foundation for University KeyTeacher by the Ministry of Education, China (GG-170-10491-1460).
文摘The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about 2.95 /100 m by integrating 266 drill-stem test (DST) measurements and comparing with the global average value. The paleogeothermal gradients are calculated from the homogenization temperatures of saline inclusions, which vary both laterally and vertically. The data from sonic logs, well tests and seismic velocities are used to investigate the pressure variations in the study area. The mudstone compaction is classified as three major types: normal compaction and normal pressure, under-compaction and overpressure, and past-compaction and under-overpressure. The current pressure profile is characterized by normal pressure, sight pressure and intense overpressure from top to bottom The faults, unconformity surfaces and interconnecting pores constitute a complex network of vertical and horizontal fluid flows within the depression. The fluid potential energy profiles present a 'double-deck' structure. The depocenters are the area of fluids supply, whereas the slopes and uplifts are the main areas of fluids charge.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10334090,10425418,60576058)the National Basic Research Program of China(Grant No.2007CB925000)
文摘This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.
文摘In order to effectively control the stress and distortion which produced in welding process, the dynamic change laws of displacement field is the most important factor. The characteristics of the welding dynamic displacement field is high temperature, high strain velocity, thus ordinary methods such as resistance strain gauge or Moiré method can not be used for the measurement of the zone of high temperature. Speckle interference method has the merits of non-contact, resistance to the disturbance of impure lights, high accuracy of measurement (half of wavelength).The paper represents the measurement of dynamic displacement field of argon-arcspot welding, by which it shows that the method of speckle interference is feasible for the measurement of welding dynamic displacement.
基金supported by National Natural Science Foundation of China(Grant No.41574013 and 41174008)National Key Research and Development Program of China(2016YFB0501701)
文摘Satellite gravity data fusion with multi-type and huge-amount is one of the hot topics in physical geodesy. After a brief review of dynamic approach, the CHAMP-only and GRACE-only gravity fields by using HL-SST and LL-SST data from 2003 to 2009 are recovered respectively. An combination strategy of CHAMP and GRACE data by using Helmert variance component estimation (VCE) is proposed based on normal equation level fusion. Three gravity field models with 150° and order by CHAMP-only data, GRACE-only data and combining CHAMP and GRACE data from 2003 to 2009 are recovered. The comparisons between our recovered models and those latest released models were performed. The external accuracy validations using marine gravity anomalies from DTU13 products and height anomalies from GPS/leveling data are also conducted in this paper. The results show that long-term CHAMP data do contribute to the accuracy improvement of gravity field solution. The accuracy of the combined model using CHAMP and GRACE data is better than those of the individuals and comparative to the models published by international groups.
基金supported by the National 973Program of China(2013CB733302)the National Natural Science Foundation of China(41131067,41174020,41374023,41474019)+2 种基金the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2015-1-3-E)the open fund of State Key Laboratory of Geographic Information Engineering(SKLGIE2013-M-1-3)the open fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education(13-02-05)
文摘A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.
基金supported by the National Natural Science Foundation of China(22178189)the Natural Science Foundation of Shandong Province(ZR2021MB113)the Postdoctoral Science Foundation of China(2022M711746)。
文摘Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources.
文摘By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Based upon this,a transient numerical simulation method,combining the pressure and velocity,tightly coupled algorithm and SST turbulence model,was used to complete the unsteady numerical simulation of the launch jet dynamics of the new-generation launch vehicles.The numerical simulation results of the launch jet dynamics,for the new-generation launch vehicles,demonstrated that despite the complex structure of the launch platform,the jet flows of the core stage and booster engines were generally smoothly channeled into the double deflecting trench through the launch platform’s diversion hole at the initial stage of ignition.After the lift off,the jet flows of the core stage and the booster engines began to affect and ablate the grillage-shaped beam and the adjoined surface of the launch platform adjacent to the booster engines.At a higher altitude after lift off,it could be seen for the new-generation launch vehicles the ablation range of high temperature and high-speed jet flows on the launch platform further expanded,which would have a severe ablation effect on the fuel filling tower near the booster engines and even all the support arms.The numerical simulation of launch jet dynamics also established that the jet flows embers at the bottom of the core stage rocket body continued to be affected for an extended period of time due to the large number of nozzles in the new-generation launch vehicles engine and the weak suction effect of the jet flows in the core-stage engines.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10574060 and 10775097)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Province Higher Educational Science and Technology Program (Grant No. J09LA07)
文摘We discuss quantum fluctuation in excited states (named thermo number states) of mesoscopic LC circuits at a finite temperature. By introducing the coherent thermo state into the thermo field dynamics pioneered by Umezawa and using the natural representation of thermo squeezing operator we can concisely derive the fluctuation. The result shows that the noise becomes larger when either temperature or the excitation number increases.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 51709060 and 51609030
文摘The hydrodynamic performance of a three-dimensional finite-length rotating cylinder is studied by means of a physical tank and numerical simulation.First,according to the identified influencing factors,a hydrodynamic performance test of the rotating cylinder was carried out in a circulating water tank.In order to explore the changing law of hydrodynamic performance with these factors,a particle image velocimetry device was used to monitor the flow field.Subsequently,a computational field dynamics numerical simulation method was used to simulate the flow field,followed by an analysis of the effects of speed ratio,Reynolds number,and aspect ratio on the flow field.The results show that the lift coefficient and drag coefficient of the cylinder increase first and then decrease with the increase of the rotational speed ratio.The trend of numerical simulation and experimental results is similar.
基金supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)
文摘Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11264018)the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20132BAB212006, 20114BAB202004, and 2009GZW0006)+1 种基金the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ12171)the Open Foundation of the Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, China (Grant No. 2013004)
文摘Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.
基金the Joint Fund of the National Natural Science Foundation of China under funding number of U19B6003-02-04the fund of A Theoretical Study of Marine Petroliferous System,Sichuan Basin,and the Science Foundation of China University of Petroleum,Beijing under funding number of 2462020BJRC005.
文摘The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.