The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains thr...The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.展开更多
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is sear...Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.展开更多
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is sear...Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.展开更多
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important Laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is sear...Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important Laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.展开更多
The advantages and disadvantages of two existing methods for explosive field visualization are analyzed in this paper. And a new method based on image fusion is proposed to integrate their complementary advantages. Wi...The advantages and disadvantages of two existing methods for explosive field visualization are analyzed in this paper. And a new method based on image fusion is proposed to integrate their complementary advantages. With the method, two source images built by equal mapping and modulus mapping are individually decomposed into two Gauss-Laplacian pyramid sequences. Then, the two individual sequences are used to make a composite one according to the process of fusion. Finally, a new image is reconstructed from the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.展开更多
We propose the realization of Majorana fermions (MFs) on the edges of a two-dimensional topological insulator in the proximity with s-wave superconductors and in the presence of transverse exchange field h. It is sh...We propose the realization of Majorana fermions (MFs) on the edges of a two-dimensional topological insulator in the proximity with s-wave superconductors and in the presence of transverse exchange field h. It is shown that there appear a pair of MFs localized at two junctions and that a reverse in the direction of h can lead to permutation of two MFs. With decreasing h, the MF states can either be fused or form one Dirac fermion on the π-junctions, exhibiting a topological phase transition. This characteristic can be used to detect physical states of MFs when they are transformed into Dirac fermions MFs is also given. localized on the π-junction. A condition of decoupling two展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51879049)DK-I Dynamic Positioning System Console Project
文摘The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.
文摘Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.
文摘Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.
文摘Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important Laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.
基金Sponsored by the National Natural Science Foundation of China(10625208)the Basic Research Foundation of Beijing Institute of Technology(20061242005)the Foundation of State Key Laboratory of Explosion Science and Technology(ZDKT08-02)
文摘The advantages and disadvantages of two existing methods for explosive field visualization are analyzed in this paper. And a new method based on image fusion is proposed to integrate their complementary advantages. With the method, two source images built by equal mapping and modulus mapping are individually decomposed into two Gauss-Laplacian pyramid sequences. Then, the two individual sequences are used to make a composite one according to the process of fusion. Finally, a new image is reconstructed from the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20140588the Research Grant Council of Hongkong under Grant No HKU7058/11P+1 种基金the CRF of the Research Grant Council of Hongkong under Grant No HKU-8/11Gthe National Basic Research Program of China under Grant No 2011CB922103
文摘We propose the realization of Majorana fermions (MFs) on the edges of a two-dimensional topological insulator in the proximity with s-wave superconductors and in the presence of transverse exchange field h. It is shown that there appear a pair of MFs localized at two junctions and that a reverse in the direction of h can lead to permutation of two MFs. With decreasing h, the MF states can either be fused or form one Dirac fermion on the π-junctions, exhibiting a topological phase transition. This characteristic can be used to detect physical states of MFs when they are transformed into Dirac fermions MFs is also given. localized on the π-junction. A condition of decoupling two
文摘由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.