Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that...Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.展开更多
The stress field caused by faulting has an effect on the stability of the neighboring faults, and the study on the fault interaction has a close relation with the prediction of seismic risk. Stress field caused by the...The stress field caused by faulting has an effect on the stability of the neighboring faults, and the study on the fault interaction has a close relation with the prediction of seismic risk. Stress field caused by the rectangle fault in the semi-infinite elastic medium is calculated on the basis of the elastic dislocation theory. The result shows that most of the successive large earthquakes, in the southwestern part of China and North China, occurred in the increasing area of shear stress S(xy) and the decreasing area of normal stress S(yy) The increasing of earthquake occurrence probability has a function relation with the increasing of stress. Earthquake triggering is resulted from the increasing of shear stress and the decreasing of normal stress. An activation coefficient A, of the earthquake is defined to express the change of seismic activity. The concrete risk region can be obtained through space scanning of At value. Finally, the fault interaction in a large scope is discussed in this paper.展开更多
In this paper, the eigenequation of notch in Reissner plate is derived by the eigenfunction method. Eigenvalues of different notches with different angles are calculated by Muller iteration method. The expression of s...In this paper, the eigenequation of notch in Reissner plate is derived by the eigenfunction method. Eigenvalues of different notches with different angles are calculated by Muller iteration method. The expression of stress and strain at the tip of notch in Reissner plate is obtained.展开更多
The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalue...The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalues under different innerangles of the notch are obtained, the expression of stress and strain at the tip of thenotch is finally derived .展开更多
Middle-lower crust and mantle rocks are generally widely exposed in metamorphic core complex or gneiss dome,which is an ideal place to study the exhumation process related to regional extension and rheology.The Laojun...Middle-lower crust and mantle rocks are generally widely exposed in metamorphic core complex or gneiss dome,which is an ideal place to study the exhumation process related to regional extension and rheology.The Laojunshan metamorphic complex in southeastern Yunnan is located in a special tectonic position surrounded by the Cathaysia,Yangtze and Indochina blocks.It is composed of different metamorphic-deformation rocks and granitic intrusions.There also are many economic deposits(e.g.,tin and tungsten)that are spatially and genetically associated with the formation and exhumation of the Laojunshan gneiss dome.Based on detailed analysis of macro-and microscopic structure,stress field distribution and deformation condition,the tectonic units of the Laojunshan metamorphic complex show obvious characteristics of doming,as well as of typical structural units of metamorphic core complex.It has strongly deformed metamorphic gneiss core(footwall),detachment fault system and sedimentary cover(hanging wall)with lightly metamorphism and deformation.The footwall of gneiss dome presents a strongly ductile deformation domain,accompanied by different ages of granitic intrusions.The distribution of developed foliation and lineation within granitic gneisses are arc-shaped and radial,respectively,with a nearly N-S trending from the footwall to the hanging wall.Mylonitization of deformed rocks gradually weakens and transits to orthogneiss as it moves away from the detachment fault toward the footwall.The low angle detachment fault between the footwall and the hanging wall shows an arc-like shape feature.Mylonite fabrics are preserved in the deformed rocks of the detachment fault,which are mainly composed of chloritized schist,fault breccia,cataclasite and fault gouge.A large number of normal faults are developed in detachment faults and hanging wall,and their stress fields radiate in an arc around the footwall.Zircon U-Pb ages of amphibolite and granitic gneiss from the footwall range from 445 to 420 Ma,indicating the timing of Caledonian magmatic emplacement and the main formation period of the Laojunshan gneiss dome.U-Pb ages of the zircon metamorphic rims are 241-230 Ma,representing the timing of high temperature metamorphism and shortened deformation of the Indosinian collision.In this period,the Laojunshan gneiss dome experienced the tectonic compression in association with high temperature metamorphism-deformation,which was superimposed by detachment and extensional exhumation in association with intense hydrothermal interaction and mineralization in the late stage.展开更多
基金Project(2017ZX05013002-002)supported by Major National Science and Technology Projects of ChinaProject(RIPED-2016-JS-276)supported by Petro-China Research Institute of Petroleum Exploration and Development
文摘Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.
文摘The stress field caused by faulting has an effect on the stability of the neighboring faults, and the study on the fault interaction has a close relation with the prediction of seismic risk. Stress field caused by the rectangle fault in the semi-infinite elastic medium is calculated on the basis of the elastic dislocation theory. The result shows that most of the successive large earthquakes, in the southwestern part of China and North China, occurred in the increasing area of shear stress S(xy) and the decreasing area of normal stress S(yy) The increasing of earthquake occurrence probability has a function relation with the increasing of stress. Earthquake triggering is resulted from the increasing of shear stress and the decreasing of normal stress. An activation coefficient A, of the earthquake is defined to express the change of seismic activity. The concrete risk region can be obtained through space scanning of At value. Finally, the fault interaction in a large scope is discussed in this paper.
文摘In this paper, the eigenequation of notch in Reissner plate is derived by the eigenfunction method. Eigenvalues of different notches with different angles are calculated by Muller iteration method. The expression of stress and strain at the tip of notch in Reissner plate is obtained.
文摘The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalues under different innerangles of the notch are obtained, the expression of stress and strain at the tip of thenotch is finally derived .
基金This work was financially supported by the National Key Research and Development Program(Grant No.SQ2017YFSF040030)the National Natural Science Foundations of China(Grant Nos.41972220&41722207).
文摘Middle-lower crust and mantle rocks are generally widely exposed in metamorphic core complex or gneiss dome,which is an ideal place to study the exhumation process related to regional extension and rheology.The Laojunshan metamorphic complex in southeastern Yunnan is located in a special tectonic position surrounded by the Cathaysia,Yangtze and Indochina blocks.It is composed of different metamorphic-deformation rocks and granitic intrusions.There also are many economic deposits(e.g.,tin and tungsten)that are spatially and genetically associated with the formation and exhumation of the Laojunshan gneiss dome.Based on detailed analysis of macro-and microscopic structure,stress field distribution and deformation condition,the tectonic units of the Laojunshan metamorphic complex show obvious characteristics of doming,as well as of typical structural units of metamorphic core complex.It has strongly deformed metamorphic gneiss core(footwall),detachment fault system and sedimentary cover(hanging wall)with lightly metamorphism and deformation.The footwall of gneiss dome presents a strongly ductile deformation domain,accompanied by different ages of granitic intrusions.The distribution of developed foliation and lineation within granitic gneisses are arc-shaped and radial,respectively,with a nearly N-S trending from the footwall to the hanging wall.Mylonitization of deformed rocks gradually weakens and transits to orthogneiss as it moves away from the detachment fault toward the footwall.The low angle detachment fault between the footwall and the hanging wall shows an arc-like shape feature.Mylonite fabrics are preserved in the deformed rocks of the detachment fault,which are mainly composed of chloritized schist,fault breccia,cataclasite and fault gouge.A large number of normal faults are developed in detachment faults and hanging wall,and their stress fields radiate in an arc around the footwall.Zircon U-Pb ages of amphibolite and granitic gneiss from the footwall range from 445 to 420 Ma,indicating the timing of Caledonian magmatic emplacement and the main formation period of the Laojunshan gneiss dome.U-Pb ages of the zircon metamorphic rims are 241-230 Ma,representing the timing of high temperature metamorphism and shortened deformation of the Indosinian collision.In this period,the Laojunshan gneiss dome experienced the tectonic compression in association with high temperature metamorphism-deformation,which was superimposed by detachment and extensional exhumation in association with intense hydrothermal interaction and mineralization in the late stage.