We improve and generalize the non-minimal curvaton model originally proposed in arXiv:2112.12680 to a model in which a spectator field non-minimally couples to an inflaton field and the power spectrum of the perturbat...We improve and generalize the non-minimal curvaton model originally proposed in arXiv:2112.12680 to a model in which a spectator field non-minimally couples to an inflaton field and the power spectrum of the perturbation of spectator field at small scales is dramatically enhanced by the sharp feature in the form of non-minimal coupling.At or after the end of inflation,the perturbation of the spectator field is converted into curvature perturbation and leads to the formation of primordial black holes(PBHs).Furthermore,for example,we consider three phenomenological models for generating PBHs with mass function peaked at~10^(-12) M_(⊙)and representing all the cold dark matter in our universe and find that the scalar induced gravitational waves generated by the curvature perturbation can be detected by the future space-borne gravitational-wave detectors such as Taiji,Tian Qin,and LISA.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC2201502)National Natural Science Foundation of China(Grant Nos.11975019,11991052,and 12047503)+2 种基金Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-7009)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-006)Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB15)。
文摘We improve and generalize the non-minimal curvaton model originally proposed in arXiv:2112.12680 to a model in which a spectator field non-minimally couples to an inflaton field and the power spectrum of the perturbation of spectator field at small scales is dramatically enhanced by the sharp feature in the form of non-minimal coupling.At or after the end of inflation,the perturbation of the spectator field is converted into curvature perturbation and leads to the formation of primordial black holes(PBHs).Furthermore,for example,we consider three phenomenological models for generating PBHs with mass function peaked at~10^(-12) M_(⊙)and representing all the cold dark matter in our universe and find that the scalar induced gravitational waves generated by the curvature perturbation can be detected by the future space-borne gravitational-wave detectors such as Taiji,Tian Qin,and LISA.