In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms,we carried out numerical experiments on cases of severe convection in the Jianghuai...In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms,we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28,2015.The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields,and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms.When the wind field in the middle or lower troposphere is weakened,the development of convective storms attenuates to some extent compared with that in the control experiment,and the ways of attenuation in the two experiments are different.In the attenuation test of wind field at the middle level,convective storms obviously weaken at all stages in its development,while for the wind field at the low level,the convective storms weaken only in the initial stage of storm.On the contrary,the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection,especially the enhancement in the middle troposphere.In contrast,the convective storms develop rapidly in this test,as the most intensive one.The wind field variations have significant impacts on the structure and organization of the storm.The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm,the reduction of the storm scale,and the organized evolution of convective storms.The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.展开更多
The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on varia...The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL.展开更多
The stress field caused by faulting has an effect on the stability of the neighboring faults, and the study on the fault interaction has a close relation with the prediction of seismic risk. Stress field caused by the...The stress field caused by faulting has an effect on the stability of the neighboring faults, and the study on the fault interaction has a close relation with the prediction of seismic risk. Stress field caused by the rectangle fault in the semi-infinite elastic medium is calculated on the basis of the elastic dislocation theory. The result shows that most of the successive large earthquakes, in the southwestern part of China and North China, occurred in the increasing area of shear stress S(xy) and the decreasing area of normal stress S(yy) The increasing of earthquake occurrence probability has a function relation with the increasing of stress. Earthquake triggering is resulted from the increasing of shear stress and the decreasing of normal stress. An activation coefficient A, of the earthquake is defined to express the change of seismic activity. The concrete risk region can be obtained through space scanning of At value. Finally, the fault interaction in a large scope is discussed in this paper.展开更多
The variations noticed in the atmospheric electric field recorded at Pune (18°32'N, 73°51'E, 559 m ASL), a tropical inland station located in Dcccan Plateau, India, during the period 1930-1987, have ...The variations noticed in the atmospheric electric field recorded at Pune (18°32'N, 73°51'E, 559 m ASL), a tropical inland station located in Dcccan Plateau, India, during the period 1930-1987, have been examined in relation to the variations observed in the Angstrom turbidity coefficient (β) and selected meteorological parameters. The monthly and annual mean values of the atmospheric electric field. Angstrom turbidity coefficient (β), rainfall, temperature and relative humidity for the years 1930-1938, 1957-1958, 1964-1965, 1973-1974 and 1987 were considered in the study.The results of the above study indicated gradual increases in the atmospheric electric field over the period of study (1930-1987) which is statistically significant at less than 5%level. The increases noticed during different periods varied from 30 to 109%. The increase noticed during the period (1930-1938) and (1973-1974) was maximum (109%). The Angstrom turbidity coefficient also showed systematic increases during the period of study, which is consistent. The diurnal curve of the atmospheric electric field at the station by and large, showed a double oscillation, which is generally observed in the conlinental environments.展开更多
By the utilization of monthly precipitation data from all stations in the Northern Hemisphere annexed to the 'World Survey of climatology, Vol. 1-15', the distributions of the maximum precipitation months (MPM...By the utilization of monthly precipitation data from all stations in the Northern Hemisphere annexed to the 'World Survey of climatology, Vol. 1-15', the distributions of the maximum precipitation months (MPM), the annual relative precipitation (ARP) and the monthly relative precipitation (percent of annual) in January and July are respectively mapped. Moreover the distributions of intermonthly relative precipitation variabilities from January to December are plotted as well. From these figures, the precipitation in the Northern Hemisphere may be classified into three types(continental, oceanic and transitional types) and 17 regions. The precipitation regime may also be divided into two patterns, the global and regional patterns. The global pattern consists of planetary front system and ITCZ and its inter-monthly variation shows the north-and-south shift of the rain belt; the regional pattern consists of the sea-land monsoon and plateau monsoon regime, in which the inter-monthly variation of rain belt shows a east-and-wcst shift.展开更多
In this paper, the fault deformation abnormality, dynamic evolution features of gravity and vertical deformation field in the seismogenic process of the Yongdeng, Gansu Province earthquake on July 22, 1995 are studied...In this paper, the fault deformation abnormality, dynamic evolution features of gravity and vertical deformation field in the seismogenic process of the Yongdeng, Gansu Province earthquake on July 22, 1995 are studied primarily. There appeared α β γ tri stage anomaly at three sites near the epicenter, and there appeared anomalies of step and sudden jump at more than 10 sites in outer region since 1993. The high value area before shock, coseismic effect and process of recovery aftershock were monitored by portable gravity data. Data reflects the changing process of fault movement from the quasi linear to the nonlinear in the near source region during seismogenic development of the Yongdeng earthquake and evolution of gravity field from heterogeneity of seismogenic term to quasi homogeneity of postseismic term. There exists close relationship between strong earthquake and dynamic evolution of regional stress strain field. Considering all above, the experience and lessons in this medium short term prediction test are summarized.展开更多
The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculati...The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculating princi-ple of fault parameters were determined, and the results were given. Of particular interests were the characteristics of the gravity variations in different dislocation types. With comparison between the calculated results and the practical measurements, it was found that the model could to some extent account for the observations. But it failed to give explanations to the more far spatial gravity variation.展开更多
By calculating the hourly standard deviation of the first-order differences of the horizontal geomagnetic com- ponent minute data, a new index Vr to represent the variation rate of the geomagnetic field was introduced...By calculating the hourly standard deviation of the first-order differences of the horizontal geomagnetic com- ponent minute data, a new index Vr to represent the variation rate of the geomagnetic field was introduced. Vr-indices show similar trends in the temporal change at different observatories and have simultaneous peak values at the observatories cov- ering a large span geographically, which reveals that the source of geomagnetic disturbances represented by Vr is in the mag- netosphere. Based on the comparison among Vr, Kp and ap, it is found that generally Vr changes linearly with Kp and ap, which means that the rapid changes of magnetic field usually exist together with magnetic disturbances. But there are excep- tions. As Vr can be easily produced by individual observatory in quasi real time and is more sensitive to the variation rate of geomagnetic field rather than the field itself, it can be expected to serve for monitoring or predicting the geomagnetic-induced event in a quick and intuitive way.展开更多
On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at di...On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales.展开更多
Based on leveling data in 1972 -2011 and relative-gravity data in 1993 -2011, we obtained a longterm vertical crustal-deformation rate of 1.62mm/a and a relative-gravity variation rate of 0.62 × 10^-8 ms^-2a^-1 f...Based on leveling data in 1972 -2011 and relative-gravity data in 1993 -2011, we obtained a longterm vertical crustal-deformation rate of 1.62mm/a and a relative-gravity variation rate of 0.62 × 10^-8 ms^-2a^-1 for the northeastern margin area of Qinghai-Tibet plateau. After removing the contributions from the observed vertical movement and inferred surface denudation, we obtain a gravity-variation rate of 0.73 × 10^-8 ms^-2a^-1 attributable to the mass changes beneath the crust. This positive change suggests that the total mass under the observation stations was gradually increasing. We consider this result to be the gravitational evidence of underplating beneath the study area, and propose that the underplating was caused by collision betwen the Indian plate and Tibetan plateau and by gravitation-potential induced deviatoric stress.展开更多
基金National Key R&D Program of China(2017YFC1502104)“333 Project”Program of Jiangsu(BRA2018100)
文摘In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms,we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28,2015.The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields,and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms.When the wind field in the middle or lower troposphere is weakened,the development of convective storms attenuates to some extent compared with that in the control experiment,and the ways of attenuation in the two experiments are different.In the attenuation test of wind field at the middle level,convective storms obviously weaken at all stages in its development,while for the wind field at the low level,the convective storms weaken only in the initial stage of storm.On the contrary,the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection,especially the enhancement in the middle troposphere.In contrast,the convective storms develop rapidly in this test,as the most intensive one.The wind field variations have significant impacts on the structure and organization of the storm.The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm,the reduction of the storm scale,and the organized evolution of convective storms.The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.
基金funded by the Major National Scientific Research Plan(2013CB733305,2012CB957703)the National Natural Science Foundation of China(41174066,41131067,41374087,41431070)
文摘The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL.
文摘The stress field caused by faulting has an effect on the stability of the neighboring faults, and the study on the fault interaction has a close relation with the prediction of seismic risk. Stress field caused by the rectangle fault in the semi-infinite elastic medium is calculated on the basis of the elastic dislocation theory. The result shows that most of the successive large earthquakes, in the southwestern part of China and North China, occurred in the increasing area of shear stress S(xy) and the decreasing area of normal stress S(yy) The increasing of earthquake occurrence probability has a function relation with the increasing of stress. Earthquake triggering is resulted from the increasing of shear stress and the decreasing of normal stress. An activation coefficient A, of the earthquake is defined to express the change of seismic activity. The concrete risk region can be obtained through space scanning of At value. Finally, the fault interaction in a large scope is discussed in this paper.
文摘The variations noticed in the atmospheric electric field recorded at Pune (18°32'N, 73°51'E, 559 m ASL), a tropical inland station located in Dcccan Plateau, India, during the period 1930-1987, have been examined in relation to the variations observed in the Angstrom turbidity coefficient (β) and selected meteorological parameters. The monthly and annual mean values of the atmospheric electric field. Angstrom turbidity coefficient (β), rainfall, temperature and relative humidity for the years 1930-1938, 1957-1958, 1964-1965, 1973-1974 and 1987 were considered in the study.The results of the above study indicated gradual increases in the atmospheric electric field over the period of study (1930-1987) which is statistically significant at less than 5%level. The increases noticed during different periods varied from 30 to 109%. The increase noticed during the period (1930-1938) and (1973-1974) was maximum (109%). The Angstrom turbidity coefficient also showed systematic increases during the period of study, which is consistent. The diurnal curve of the atmospheric electric field at the station by and large, showed a double oscillation, which is generally observed in the conlinental environments.
文摘By the utilization of monthly precipitation data from all stations in the Northern Hemisphere annexed to the 'World Survey of climatology, Vol. 1-15', the distributions of the maximum precipitation months (MPM), the annual relative precipitation (ARP) and the monthly relative precipitation (percent of annual) in January and July are respectively mapped. Moreover the distributions of intermonthly relative precipitation variabilities from January to December are plotted as well. From these figures, the precipitation in the Northern Hemisphere may be classified into three types(continental, oceanic and transitional types) and 17 regions. The precipitation regime may also be divided into two patterns, the global and regional patterns. The global pattern consists of planetary front system and ITCZ and its inter-monthly variation shows the north-and-south shift of the rain belt; the regional pattern consists of the sea-land monsoon and plateau monsoon regime, in which the inter-monthly variation of rain belt shows a east-and-wcst shift.
文摘In this paper, the fault deformation abnormality, dynamic evolution features of gravity and vertical deformation field in the seismogenic process of the Yongdeng, Gansu Province earthquake on July 22, 1995 are studied primarily. There appeared α β γ tri stage anomaly at three sites near the epicenter, and there appeared anomalies of step and sudden jump at more than 10 sites in outer region since 1993. The high value area before shock, coseismic effect and process of recovery aftershock were monitored by portable gravity data. Data reflects the changing process of fault movement from the quasi linear to the nonlinear in the near source region during seismogenic development of the Yongdeng earthquake and evolution of gravity field from heterogeneity of seismogenic term to quasi homogeneity of postseismic term. There exists close relationship between strong earthquake and dynamic evolution of regional stress strain field. Considering all above, the experience and lessons in this medium short term prediction test are summarized.
基金Joint Seismological Science Foundation of China (No.101005).
文摘The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculating princi-ple of fault parameters were determined, and the results were given. Of particular interests were the characteristics of the gravity variations in different dislocation types. With comparison between the calculated results and the practical measurements, it was found that the model could to some extent account for the observations. But it failed to give explanations to the more far spatial gravity variation.
文摘By calculating the hourly standard deviation of the first-order differences of the horizontal geomagnetic com- ponent minute data, a new index Vr to represent the variation rate of the geomagnetic field was introduced. Vr-indices show similar trends in the temporal change at different observatories and have simultaneous peak values at the observatories cov- ering a large span geographically, which reveals that the source of geomagnetic disturbances represented by Vr is in the mag- netosphere. Based on the comparison among Vr, Kp and ap, it is found that generally Vr changes linearly with Kp and ap, which means that the rapid changes of magnetic field usually exist together with magnetic disturbances. But there are excep- tions. As Vr can be easily produced by individual observatory in quasi real time and is more sensitive to the variation rate of geomagnetic field rather than the field itself, it can be expected to serve for monitoring or predicting the geomagnetic-induced event in a quick and intuitive way.
基金funded by the Special Fund for Earthquake Scientific Research of China(201308004,201308009)
文摘On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales.
基金supported by the National Natural Science Foundation of China(40874035)
文摘Based on leveling data in 1972 -2011 and relative-gravity data in 1993 -2011, we obtained a longterm vertical crustal-deformation rate of 1.62mm/a and a relative-gravity variation rate of 0.62 × 10^-8 ms^-2a^-1 for the northeastern margin area of Qinghai-Tibet plateau. After removing the contributions from the observed vertical movement and inferred surface denudation, we obtain a gravity-variation rate of 0.73 × 10^-8 ms^-2a^-1 attributable to the mass changes beneath the crust. This positive change suggests that the total mass under the observation stations was gradually increasing. We consider this result to be the gravitational evidence of underplating beneath the study area, and propose that the underplating was caused by collision betwen the Indian plate and Tibetan plateau and by gravitation-potential induced deviatoric stress.