期刊文献+
共找到328,901篇文章
< 1 2 250 >
每页显示 20 50 100
The action mechanism of the work done by the electric field force on moving charges to stimulate the emergence of carrier generation/recombination in a PN junction
1
作者 Lingyun GUO Yizhan YANG +1 位作者 Wanli YANG Yuantai HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1001-1014,共14页
It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron curren... It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices. 展开更多
关键词 piezoelectric semiconductor(PS) work done by electric field force thermal effect piezotronic device resistivity conductivity
下载PDF
Coexisting fast–slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
2
作者 魏熙乐 任泽宇 +2 位作者 卢梅丽 樊亚琴 常思远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期614-626,共13页
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ... Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues. 展开更多
关键词 hippocampal network EPILEPTIFORM dendritic oscillation traveling wave electric field coupling
下载PDF
Reactor field reconstruction from sparse and movable sensors using Voronoi tessellation-assisted convolutional neural networks
3
作者 He-Lin Gong Han Li +1 位作者 Dunhui Xiao Sibo Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期173-185,共13页
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C... The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively. 展开更多
关键词 Voronoi tessellation field reconstruction Nuclear reactors Reactor physics On-line monitoring
下载PDF
Consideration of the influence of supports in modeling the electromagnetic fields of 25 kV traction networks under emergency conditions
4
作者 Konstantin Suslov Andrey Kryukov +1 位作者 Ekaterina Voronina Pavel Ilyushin 《Global Energy Interconnection》 EI CSCD 2024年第4期528-540,共13页
Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits ex... Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits exist between the contact wire and rails or ground.Despite the short duration of exposure,they can adversely affect electronic devices and induce significant voltages in adjacent power lines,which is dangerous for operating personnel.Although numerous investigations have focused on modeling the EMF of traction networks and power lines,the challenge of determining the three-dimensional electromagnetic fields near metal supports during the flow of a short-circuit current through them is yet to be resolved.In this case,the field has a complex spatial structure that significantly complicates the calculations of intensities.This study proposes a methodology,algorithms,software,and digital models for determining the EMF in the described emergency scenarios.During the modeling process,the objects being studied were represented by segments of thin wires to analyze the distribution of the electric charge and calculate the intensities of the electric and magnetic fields.This approach was implemented in the Fazonord software,and the modeling results show a substantial increase in EMF levels close to the support,with a noticeable decrease in the levels as the distance from it increases.The procedure implemented in the commercial software Fazonord is universal and can be used to determine electromagnetic fields at any electrical power facility that includes live parts of limited length.Based on the proposed procedure,the EMF near the supports of overhead power lines and traction networks of various designs could be determined,the EMF levels at substations can be calculated,and the influence of metal structures located near traction networks,such as pedestrian crossings at railway stations,can be considered. 展开更多
关键词 Power supply systems AC railways Emergency conditions Electromagnetic fields near supports MODELING Electromagnetic safety
下载PDF
Parameter identification for a damage phase field model using a physics-informed neural network 被引量:1
5
作者 Carlos J.G.Rojas Jos L.Boldrini Marco L.Bittencourt 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期229-246,共18页
This work applies concepts of artificial neural networks to identify the parameters of a mathematical model based on phase fields for damage and fracture.Damage mechanics is the part of the continuum mechanics that mo... This work applies concepts of artificial neural networks to identify the parameters of a mathematical model based on phase fields for damage and fracture.Damage mechanics is the part of the continuum mechanics that models the effects of micro-defect formation using state variables at the macroscopic level.The equations that define the model are derived from fundamental laws of physics and provide important relationships among state variables.Simulations using the model considered in this work produce good qualitative and quantitative results,but many parameters must be adjusted to reproduce certain material behavior.The identification of model parameters is considered by solving an inverse problem that uses pseudo-experimental data to find the best values that fit the data.We apply physics informed neural network and combine some classical estimation methods to identify the material parameters that appear in the damage equation of the model.Our strategy consists of a neural network that acts as an approximating function of the damage evolution with output regularized using the residue of the differential equation.Three stages of optimization seek the best possible values for the neural network and the material parameters.The training alternates between the fitting of only the pseudo-experimental data or the total loss that includes the regularizing terms.We test the robustness of the method to noisy data and its generalization capabilities using a simple physical case for the damage model.This procedure deals better with noisy data in comparison with a more standard PDE-constrained optimization method,and it also provides good approximations of the material parameters and the evolution of damage. 展开更多
关键词 Deep learning DAMAGE Phase field Parameter fitting Inverse analysis
下载PDF
Drilling-based measuring method for the c-φ parameter of rock and its field application 被引量:2
6
作者 Bei Jiang Fenglin Ma +5 位作者 Qi Wang Hongke Gao Dahu Zhai Yusong Deng Chuanjie Xu Liangdi Yao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期65-76,共12页
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R... The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters. 展开更多
关键词 Digital drilling Rock crushing zone c-u parameter Measurement method field application
下载PDF
Machine learning inspired workflow to revise field development plan under uncertainty
7
作者 LOOMBA Ashish Kumar BOTECHIA Vinicius Eduardo SCHIOZER Denis José 《Petroleum Exploration and Development》 SCIE 2023年第6期1455-1465,共11页
We present an efficient and risk-informed closed-loop field development (CLFD) workflow for recurrently revising the field development plan (FDP) using the accrued information. To make the process practical, we integr... We present an efficient and risk-informed closed-loop field development (CLFD) workflow for recurrently revising the field development plan (FDP) using the accrued information. To make the process practical, we integrated multiple concepts of machine learning, an intelligent selection process to discard the worst FDP options and a growing set of representative reservoir models. These concepts were combined and used with a cluster-based learning and evolution optimizer to efficiently explore the search space of decision variables. Unlike previous studies, we also added the execution time of the CLFD workflow and worked with more realistic timelines to confirm the utility of a CLFD workflow. To appreciate the importance of data assimilation and new well-logs in a CLFD workflow, we carried out researches at rigorous conditions without a reduction in uncertainty attributes. The proposed CLFD workflow was implemented on a benchmark analogous to a giant field with extensively time-consuming simulation models. The results underscore that an ensemble with as few as 100 scenarios was sufficient to gauge the geological uncertainty, despite working with a giant field with highly heterogeneous characteristics. It is demonstrated that the CLFD workflow can improve the efficiency by over 85% compared to the previously validated workflow. Finally, we present some acute insights and problems related to data assimilation for the practical application of a CLFD workflow. 展开更多
关键词 field development plan closed-loop field development reservoir model machine learning reservoir uncertainty optimization reservoir simulation efficiency
下载PDF
Field test of high-power microwave-assisted mechanical excavation for deep hard iron ore 被引量:1
8
作者 Feng Lin Xia-Ting Feng +5 位作者 Shiping Li Xiao Hai Jiuyu Zhang Xiangxin Su Tianyang Tong Jianchun Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1922-1935,共14页
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re... Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used. 展开更多
关键词 Microwave parameters High power field experiment Mechanical mining
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
9
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Extension of sound field reconstruction based on element radiation superposition method in a sparsity framework
10
作者 高塬 杨博全 +1 位作者 时胜国 张昊阳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期412-422,共11页
Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does n... Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods. 展开更多
关键词 sound field reconstruction nearfield acoustic holography element radiation superposition method sparsity framework
下载PDF
A new electric field mill array with each of the mill’s rotor controlled precisely by a GPS module:Equipment and initial results
11
作者 Kozo Yamashita Hironobu Fujisaka +4 位作者 DaoHong Wang Hiroyuki Iwasaki Kazuo Yamamoto Koichiro Michimoto Masashi Hayakawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期423-435,共13页
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote... We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array. 展开更多
关键词 LIGHTNING electrostatic field electric field mill electric field change
下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
12
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
下载PDF
Strong field ionization of molecules on the surface of nanosystems
13
作者 曲棋文 孙烽豪 +3 位作者 王佳伟 高健 李辉 吴健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期25-34,共10页
Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailore... Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields.Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses,the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques.In this review,we provide a summarization of the strong field ionization occurring on the surface of nanosystems.The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem,the fundamental processes of which are yet to be discovered.We discuss the influence on nanoparticle constituents,geometric shapes and sizes,as well as the specific waveforms of the excitation laser fields.The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions,thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels. 展开更多
关键词 NANOPARTICLE femtosecond laser field local field enhancement
下载PDF
Variational Reconstruction and Simulation Experiments of Sea Surface Wind Field for Ocean Data Buoy
14
作者 LI Yunzhou HUANG Sixun +4 位作者 YAN Shen SUN Xuejin QI Suiping WANG Zhongqiu TANG Xiaoyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期577-582,共6页
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie... The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future. 展开更多
关键词 moored buoy three-dimensional wind field distribution variational analysis wind field reconstruction
下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
15
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
下载PDF
Formulation of Work-Study Combined and Result-Oriented Integrated Curriculum Standards
16
作者 Lianfang LI Chunhua DU +2 位作者 Fen YANG Yun LI Yanfei NIU 《Medicinal Plant》 2024年第3期79-83,共5页
According to the Annex Technical Regulations for Integrated Curriculum Development(Trial)in Document No.30 of the General Office of the Ministry of Human Resources and Social Security(2012),this paper studies the form... According to the Annex Technical Regulations for Integrated Curriculum Development(Trial)in Document No.30 of the General Office of the Ministry of Human Resources and Social Security(2012),this paper studies the formulation of the curriculum standards for the integration of Chinese medicinal materials production.We focus on the formulation ideas of the curriculum standards for the integration of Chinese medicinal materials production,the formulation process of the curriculum standards for the integration of Chinese medicinal materials production,including the description of typical work tasks,the determination of curriculum objectives,the analysis of study content,the description of referential study tasks,teaching implementation suggestions,assessment and evaluation suggestions,which can provide a reference for the development and research of other related integrated courses. 展开更多
关键词 Integration of work and STUDY work process Curriculum STANDARDS Production of Chinese MEDICINAL materials Typical work TASKS REFERENTIAL STUDY TASKS
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
17
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
Spin Resolved Zero-Line Modes in Minimally Twisted Bilayer Graphene from Exchange Field and Gate Voltage
18
作者 Sanyi You Jiaqi An Zhenhua Qiao 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期111-116,共6页
The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zer... The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zero-line modes have attracted widespread attention due to their substantial advantage of being initially realizable with just an external electric field. However, the uncontrollable nature of electrode alignment and precise fabrication has greatly hindered the advancement in this field. By utilizing minimally twisted bilayer graphene and introducing exchange fields from magnetic substrates, we successfully realize a spin-resolved, electrode-free topological zeroline mode. Further integration of electrodes that do not require alignment considerations significantly enhances the tunability of the system's band structure. Our approach offers a promising new support for the dazzling potential of topological zero-line mode in the realm of low-energy-consumption electronics. 展开更多
关键词 structure field TOPOLOGICAL
下载PDF
A booming field of large animal model research
19
作者 Xiao-Jiang Li Liangxue Lai 《Zoological Research》 SCIE CSCD 2024年第2期311-313,共3页
Animal models are integral to the study of fundamental biological processes and the etiology of human diseases.Small animal models,especially those involving mice,have yielded abundant and significant insights,greatly... Animal models are integral to the study of fundamental biological processes and the etiology of human diseases.Small animal models,especially those involving mice,have yielded abundant and significant insights,greatly enhancing our understanding of biological phenomena and disease mechanisms. 展开更多
关键词 MECHANISMS INSIGHT field
下载PDF
Petrology and Structural Characterization of Post-Neoproterozoic Dolerites from the Kimberlite Fields in the Kéniéba Region (Western Mali)
20
作者 Gbele Ouattara Baco Traore +3 位作者 Ziandjêdé Hervé Siagné Aboubacar Denon Souleymane Sangare Marc Ephrem Allialy 《Open Journal of Geology》 CAS 2024年第6期655-670,共16页
Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with th... Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with them. The petrographic and lithogeochemical study showed that the dolerites of the Kéniéba kimberlitic fields are of tholeiitic nature and of the E-MORB (Enriched-Mid Ocean Ridge Basalt) type. This reflects an enrichment over time, compared to the Birimian dolerites of the volcano-sedimentary greenstone belt of Toumodi, in central C?te d’Ivoire. Furthermore, these dolerites are enriched in SiO2, TiO2, Zr and poor in Fe2O3, MgO. These dolerites would have formed in a late to post-orogenic intracontinental context during the breakup of Gondwana. Structurally, Kéniéba dolerites are often associated with kimberlite pipes, fractures and large deep structures identified using aeromagnetic images. Taking into account the fact that kimberlites do not outcrop in the Kéniéba region, the geochemical study coupled with the interpretation of aeromagnetic data proved to be very useful for the search for pipes. 展开更多
关键词 DOLERITES Kimberlitic fields PETROLOGY Structures Kéniéba MALI
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部