Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame...In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator ...This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator teeth height,and number of poles are analyzed to compare overall torque,power,and torque ripples in order to select the best design parameters and their ranges.Pyleecan,an open-source software,is used to design and optimize the motor for electric vehicle applications.Following optimization with Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32%and 77%.Additionally,the impact of different magnet grades on the output performances is analyzed.展开更多
In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much ...In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.展开更多
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
In this paper, a new type of harmonic injection permanent magnet shape optimization method is proposed to suppress the torque ripple of surface-mounted permanent magnet synchronous motor. The sinusoidal waveform shapi...In this paper, a new type of harmonic injection permanent magnet shape optimization method is proposed to suppress the torque ripple of surface-mounted permanent magnet synchronous motor. The sinusoidal waveform shaping of the axial section of the permanent magnet is added with the third harmonic shaping, and the sine wave and the third harmonic are derived. The optimal ratio is 6:1. The permanent magnet no shaping, sinusoidal shaping and sinusoidal combined third harmonic shaping are compared. The results show that the sinusoidal combined third harmonic shaping design can effectively suppress the torque ripple of the surface mounted permanent magnet synchronous motor and obtain a relatively large output torque. At the same time, a method of using permanent magnet segmentation to approximately equivalently replace sine combined with third harmonic shaping design is proposed, which effectively saves the manufacturing cost of permanent magnets and provides design and research ideas for more economical and effective optimization of surface-mounted permanent magnet motors.展开更多
Because of its simple structure,large torque and high efficiency,permanent magnet synchronous motor of low speed and high torque is widely adopted in many fields.In this paper,a 394.5k W mining low-speed high-torque p...Because of its simple structure,large torque and high efficiency,permanent magnet synchronous motor of low speed and high torque is widely adopted in many fields.In this paper,a 394.5k W mining low-speed high-torque permanent magnet synchronous motor(LSHTPMSM)is regarded as the study object.According to the physical model,a three-dimensional equivalent heat transfer temperature field calculation model of the motor is built to simulate the temperature distribution of the motor under rated conditions.In terms of the serious issue of stator winding temperature increase of permanent magnet synchronous motor of low speed and high torque,the heat conduction optimization of the end of the stator winding is studied,which enhances the heat dissipation effect of the stator end winding,effectively reduces its temperature increase and temperature gradient with the winding in the slot,and improves the practical efficiency and service life of the motor.Finally,the motor temperature rise test platform is constructed for the verification of the feasibility of the optimization scheme,which provides a reference direction for the heat dissipation optimization of permanent magnet synchronous motor of low speed and high torque.展开更多
Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ...Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.展开更多
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s...In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.展开更多
The spoke-type permanent magnet motor with auxiliary stator exhibits high torque performance owing to the flux focus effects.To further improve its torque density,this paper proposes a control method by using harmonic...The spoke-type permanent magnet motor with auxiliary stator exhibits high torque performance owing to the flux focus effects.To further improve its torque density,this paper proposes a control method by using harmonic current strategy.Based on the theoretical analysis,a 3-D torque look-up table by dq-axis current and electrical angle is established with the aid of the finite element method(FEM).The maximum torque per ampere curve at each rotor position is identified and summarized to adequately indicate the relationship between torque and current amplitude of the motor.Through theoretical derivation,it is concluded that the minimum torque cost curve is the contour line of?Te/?i2,which can be employed to identify the harmonic current for torque density improvement.Compared to traditional strategies,the proposed control strategy can increase torque density of forward and reverse torque by 1.22%and 1.40%,respectively.The experimental results verify the analysis and simulation results,as well as prove the effectiveness of the proposed strategy.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the b...A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.展开更多
The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inve...The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.展开更多
The direct torque control theory has achieved great success in the control ofinduction motors. However, in the DTC drive system of Permanent Magnet Synchronous Machine (PMSM)proposed a few years ago, there are many ba...The direct torque control theory has achieved great success in the control ofinduction motors. However, in the DTC drive system of Permanent Magnet Synchronous Machine (PMSM)proposed a few years ago, there are many basic theoretical problems that must be clarified. Thispaper describes an investigation about the effect of the zero voltage space vectors in the DTCsystem of PMSM and points out that if using the zero voltage space vectors rationally, not only canthe DTC system be driven successfully but also the torque ripple is reduced and the performance ofthe system is improved. This paper also studies the sensorless technique in the DTC system of PMSMand configures the DTC system of PMSM with sensorless technique including zero voltage spacevectors. Numerical simulations and experimental tests have proved the theory correct. In thecondition of sensor-less, the DTC system of PMSM is wide-rangely speed adjusting, and the ratio ofspeed adjustment is 1: 100.展开更多
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear...This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金the Natural Science Foundation of China under Grant 52077027in part by the Liaoning Province Science and Technology Major Project No.2020JH1/10100020.
文摘In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金funded by the Advanced Sustainable Manufacturing Technologies(ASTUTE2020)operation supporting manufacturing companies across Wales,which has been part-funded by the European Regional Development Fund through the Welsh Government and the participating Higher Education Institutions。
文摘This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator teeth height,and number of poles are analyzed to compare overall torque,power,and torque ripples in order to select the best design parameters and their ranges.Pyleecan,an open-source software,is used to design and optimize the motor for electric vehicle applications.Following optimization with Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32%and 77%.Additionally,the impact of different magnet grades on the output performances is analyzed.
文摘In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper, a new type of harmonic injection permanent magnet shape optimization method is proposed to suppress the torque ripple of surface-mounted permanent magnet synchronous motor. The sinusoidal waveform shaping of the axial section of the permanent magnet is added with the third harmonic shaping, and the sine wave and the third harmonic are derived. The optimal ratio is 6:1. The permanent magnet no shaping, sinusoidal shaping and sinusoidal combined third harmonic shaping are compared. The results show that the sinusoidal combined third harmonic shaping design can effectively suppress the torque ripple of the surface mounted permanent magnet synchronous motor and obtain a relatively large output torque. At the same time, a method of using permanent magnet segmentation to approximately equivalently replace sine combined with third harmonic shaping design is proposed, which effectively saves the manufacturing cost of permanent magnets and provides design and research ideas for more economical and effective optimization of surface-mounted permanent magnet motors.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘Because of its simple structure,large torque and high efficiency,permanent magnet synchronous motor of low speed and high torque is widely adopted in many fields.In this paper,a 394.5k W mining low-speed high-torque permanent magnet synchronous motor(LSHTPMSM)is regarded as the study object.According to the physical model,a three-dimensional equivalent heat transfer temperature field calculation model of the motor is built to simulate the temperature distribution of the motor under rated conditions.In terms of the serious issue of stator winding temperature increase of permanent magnet synchronous motor of low speed and high torque,the heat conduction optimization of the end of the stator winding is studied,which enhances the heat dissipation effect of the stator end winding,effectively reduces its temperature increase and temperature gradient with the winding in the slot,and improves the practical efficiency and service life of the motor.Finally,the motor temperature rise test platform is constructed for the verification of the feasibility of the optimization scheme,which provides a reference direction for the heat dissipation optimization of permanent magnet synchronous motor of low speed and high torque.
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘The spoke-type permanent magnet motor with auxiliary stator exhibits high torque performance owing to the flux focus effects.To further improve its torque density,this paper proposes a control method by using harmonic current strategy.Based on the theoretical analysis,a 3-D torque look-up table by dq-axis current and electrical angle is established with the aid of the finite element method(FEM).The maximum torque per ampere curve at each rotor position is identified and summarized to adequately indicate the relationship between torque and current amplitude of the motor.Through theoretical derivation,it is concluded that the minimum torque cost curve is the contour line of?Te/?i2,which can be employed to identify the harmonic current for torque density improvement.Compared to traditional strategies,the proposed control strategy can increase torque density of forward and reverse torque by 1.22%and 1.40%,respectively.The experimental results verify the analysis and simulation results,as well as prove the effectiveness of the proposed strategy.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
文摘A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.
文摘The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.
基金Aeronautical Science Emphasis foundation of China( 98Z5 2 0 0 1) Delta Power Electronics Science &Education DevelopmentF und
文摘The direct torque control theory has achieved great success in the control ofinduction motors. However, in the DTC drive system of Permanent Magnet Synchronous Machine (PMSM)proposed a few years ago, there are many basic theoretical problems that must be clarified. Thispaper describes an investigation about the effect of the zero voltage space vectors in the DTCsystem of PMSM and points out that if using the zero voltage space vectors rationally, not only canthe DTC system be driven successfully but also the torque ripple is reduced and the performance ofthe system is improved. This paper also studies the sensorless technique in the DTC system of PMSMand configures the DTC system of PMSM with sensorless technique including zero voltage spacevectors. Numerical simulations and experimental tests have proved the theory correct. In thecondition of sensor-less, the DTC system of PMSM is wide-rangely speed adjusting, and the ratio ofspeed adjustment is 1: 100.
基金Project supported by the Hi-Tech Research and Development Program of China (863) (Grant No 2007AA05Z229)National Natural Science Foundation of China (Grant Nos 50877028, 60774069 and 10862001)Science Foundation of Guangdong Province (Grant No 8251064101000014)
文摘This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.