In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi...In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrodinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have pot...With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrodinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have potential applications in the long-distance communication of two-pulse propagation in inhomogeneous optical fibers. Based on the obtained nonisospectral linear eigenvalue problems (i.e. Lax pair), we construct the Darboux transformation for such a model to derive the optical soliton solutions. In addition, through the one- and two-soliton-like solutions, we graphically discuss the features of picosecond solitons in inhomogeneous optical fibers.展开更多
The present work studies the inverse scattering transforms(IST)of the inhomogeneous fifth-order nonlinear Schrodinger(NLS)equation with zero boundary conditions(ZBCs)and nonzero boundary conditions(NZBCs).Firstly,the ...The present work studies the inverse scattering transforms(IST)of the inhomogeneous fifth-order nonlinear Schrodinger(NLS)equation with zero boundary conditions(ZBCs)and nonzero boundary conditions(NZBCs).Firstly,the bound-state solitons of the inhomogeneous fifth-order NLS equation with ZBCs are derived by the residue theorem and the Laurent's series for the first time.Then,by combining with the robust IST,the Riemann-Hilbert(RH)problem of the inhomogeneous fifth-order NLS equation with NZBCs is revealed.Furthermore,based on the resulting RH problem,some new rogue wave solutions of the inhomogeneous fifth-order NLS equation are found by the Darboux transformation.Finally,some corresponding graphs are given by selecting appropriate parameters to further analyze the unreported dynamic characteristics of the corresponding solutions.展开更多
The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory a...The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.展开更多
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312.
文摘In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+2 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006Chinese Ministry of Education
文摘With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrodinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have potential applications in the long-distance communication of two-pulse propagation in inhomogeneous optical fibers. Based on the obtained nonisospectral linear eigenvalue problems (i.e. Lax pair), we construct the Darboux transformation for such a model to derive the optical soliton solutions. In addition, through the one- and two-soliton-like solutions, we graphically discuss the features of picosecond solitons in inhomogeneous optical fibers.
基金supported by the National Natural Science Foundation of China under Grant No.11975306the Natural Science Foundation of Jiangsu Province under Grant No.BK20181351+1 种基金the Six Talent Peaks Project in Jiangsu Province under Grant No.JY-059the Fundamental Research Fund for the Central Universities under the Grant Nos.2019ZDPY07 and 2019QNA35。
文摘The present work studies the inverse scattering transforms(IST)of the inhomogeneous fifth-order nonlinear Schrodinger(NLS)equation with zero boundary conditions(ZBCs)and nonzero boundary conditions(NZBCs).Firstly,the bound-state solitons of the inhomogeneous fifth-order NLS equation with ZBCs are derived by the residue theorem and the Laurent's series for the first time.Then,by combining with the robust IST,the Riemann-Hilbert(RH)problem of the inhomogeneous fifth-order NLS equation with NZBCs is revealed.Furthermore,based on the resulting RH problem,some new rogue wave solutions of the inhomogeneous fifth-order NLS equation are found by the Darboux transformation.Finally,some corresponding graphs are given by selecting appropriate parameters to further analyze the unreported dynamic characteristics of the corresponding solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11975143)Nature Science Foundation of Shandong Province of China(Grant No.ZR2018MA017)+1 种基金the Taishan Scholars Program of Shandong Province,China(Grant No.ts20190936)the Shandong University of Science and Technology Research Fund(Grant No.2015TDJH102).
文摘The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.