Aiming at mercury and dioxin in fire coal gas as research objects,nonthermal plasma(NTP)catalytic technology was used to investigate the degradation effect of operating condition parameters on mixed pollutants in mixe...Aiming at mercury and dioxin in fire coal gas as research objects,nonthermal plasma(NTP)catalytic technology was used to investigate the degradation effect of operating condition parameters on mixed pollutants in mixed flue gas condition,and to explore the synergistic degradation of Hg0and TCB(1,2,3-trichlorobenzene,TCB)under mixed flue gas conditions.The research results showed that the conversion efficiency of mercury and TCB increased with the additional output of voltage,and decreased with the increase of the gas flow rate.Under optimal reaction conditions:voltage=17 k V,frequency=300 Hz,gas flow rate=21 min^(-1),the conversion efficiency of Hg^(0)and TCB reached the highest 91.4%and 84.98%,respectively.In the NTP catalytic system,active free radicals played an important role in the synergistic conversion of mercury and TCB,which have a competitive effect,to make the conversion efficiency of mixed pollutants lower than a single substance.In the mixed flue gas condition,the mixed gas has an inhibitory effect on the synergistic conversion of mercury and TCB.Kinetic modeling of NTP catalytic synergistic reaction was established.Under three conditions of TCB,mercury and TCB,mixed simulated flue gas,the NTP catalytic technology showed a quasi-firstorder kinetic reaction for the degradation of TCB.According to the synergistic effect of NTP and composites,the transformation and degradation of TCB mainly included two processes:TCB and ring opening,and Hg^(0)was finally oxidized to Hg^(2+).展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
基金supported by National Natural Science Foundation of China(No.52270114)。
文摘Aiming at mercury and dioxin in fire coal gas as research objects,nonthermal plasma(NTP)catalytic technology was used to investigate the degradation effect of operating condition parameters on mixed pollutants in mixed flue gas condition,and to explore the synergistic degradation of Hg0and TCB(1,2,3-trichlorobenzene,TCB)under mixed flue gas conditions.The research results showed that the conversion efficiency of mercury and TCB increased with the additional output of voltage,and decreased with the increase of the gas flow rate.Under optimal reaction conditions:voltage=17 k V,frequency=300 Hz,gas flow rate=21 min^(-1),the conversion efficiency of Hg^(0)and TCB reached the highest 91.4%and 84.98%,respectively.In the NTP catalytic system,active free radicals played an important role in the synergistic conversion of mercury and TCB,which have a competitive effect,to make the conversion efficiency of mixed pollutants lower than a single substance.In the mixed flue gas condition,the mixed gas has an inhibitory effect on the synergistic conversion of mercury and TCB.Kinetic modeling of NTP catalytic synergistic reaction was established.Under three conditions of TCB,mercury and TCB,mixed simulated flue gas,the NTP catalytic technology showed a quasi-firstorder kinetic reaction for the degradation of TCB.According to the synergistic effect of NTP and composites,the transformation and degradation of TCB mainly included two processes:TCB and ring opening,and Hg^(0)was finally oxidized to Hg^(2+).
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.