Hexangulaconulariids,an extinct family of medusozoan small shelly fossils(SSFs),were a conspicuous component of early Cambrian,shallow marine platform communities in South China.Described herein is Septuconularia cras...Hexangulaconulariids,an extinct family of medusozoan small shelly fossils(SSFs),were a conspicuous component of early Cambrian,shallow marine platform communities in South China.Described herein is Septuconularia crassiformis sp.nov.from Bed 5 of the Yanjiahe Formation(Cambrian Stage 2)in the Three Gorges area of Hubei Province.The new species differs from the type and only other known species,S.yanjiaheensis,in the shape of the abapical portion and in the degree of curvature of the adapertural margin.The anatomy of the apical portion of the new species is unknown.The diagnosis of the genus Septuconularia is emended and the spatio-temporal distribution of hexangulaconulariids in South China is summarized.Finally,S.yanjiaheensis,with its slit-like aperture and very narrow transverse cross-section,may have been better adapted to the shallow platform environment than the broader S.crassiformis,which appears to have been less common than the type species.展开更多
The mode-2 internal solitary waves(ISWs)generated by mode-2 internal tide(IT)are identified by mooring observations in the northern South China Sea(SCS)from 2016 to 2017.Two mode-2 ISWs with a re-appearance period of ...The mode-2 internal solitary waves(ISWs)generated by mode-2 internal tide(IT)are identified by mooring observations in the northern South China Sea(SCS)from 2016 to 2017.Two mode-2 ISWs with a re-appearance period of 24.9 h observed on 29 and 30 July 2016 are characterized by type-b ISWs.They occurred when the isotherms compressed obviously in the vertical direction.Modal decomposition of IT horizontal currents shows that the vertical compression of the isotherms is mainly caused by diurnal mode-2 IT.The analysis of the role of the density stratification reveals that a deeper and thinner pycnocline is favorable for generation of mode-2 ISWs rather than pycnocline intensity.By comparing the mode-2 nonlinear,dispersion coefficients and the Ursell numbers calculated based on the stratification associated with different kinds of ITs with the observation results,it is shown that the diurnal mode-2 IT plays a crucial role in the generation of the mode-2 ISWs.When the diurnal mode-2 IT interacts with the semidiurnal IT and causes a deeper and thinner pycnocline,the mode-2 ISWs are easily excited.展开更多
A multilayer study of pCO2 for the Yellow and South China Seas in the surface waters was conducted based on data from four cruises sponsored by the China SOLAS Project in 2005 and 2006,including data for the surface m...A multilayer study of pCO2 for the Yellow and South China Seas in the surface waters was conducted based on data from four cruises sponsored by the China SOLAS Project in 2005 and 2006,including data for the surface microlayer(SML) ,subsurface layer(SSL) and surface layer(SL) . The carbon fluxes across the air-sea interface were calculated. The results showed that the pCO2 values in the surface waters of the study area decreased in the following order:pCO2 SML> pCO2 SSL> pCO2 SL. The highest values were found in March for all SML,SSL and SL,followed by those in April,and the lowest were in May. The pCO2 values had a significant positive correlation with temperature or salinity. While there was no relationship between pCO2 and longitude,there was a significant negative correlation between it and latitude,i.e.,'high latitude low pCO2'. By using four calculation models,the carbon dioxide fluxes(FC O2) in spring in the Yellow and South China Seas,which were found to act as a 'sink' of atmospheric CO2,were preliminarily estimated on the basis of the pCO2 data in the SML to be -7.00×106 t C and -22.35×106 t C,respectively. It is suggested that the FC O2calculated on the basis of pCO2 data in the SML is more reliable than that calculated on the basis of those in the SL.展开更多
The effects of fertilizers and water content on N2O emission were studied using the three most typical plantation soils. Soil incubations were performed and fertilization and water content treatments were designed. At...The effects of fertilizers and water content on N2O emission were studied using the three most typical plantation soils. Soil incubations were performed and fertilization and water content treatments were designed. At 25% of saturated water content(SWC), N2O emissions from the soil treated with urea, KNO3, (NH4)2 SO, and KH2 PO, were compared at application rates of 0, 100, 200, 300 and 500 kg/hm2. At 80% of SWC, similar experiments were carried out but at only one application rate(500 kg/hm^2). N2O emissions at various water contents(20%, 35%, 50%, 65%, 80% and 100% of SWC) were studied. At low water content(25% of SWC), neither nitrogen nor phosphorus(or potassium) fertilizers led to a high level of N2O emission, which generally ranged from 2.03 to 29.02 μg/(m^2·h). However, at high water content(80% SWC), the fertilizers resulted in much greater N2O emission irregardless of soil tested. The highest N2O emission rates after 24 h of water addition were 1233 lag/( m^2 ·h) for S. superba soil, 1507 lag/(m^2 · h) for P. elliottii soil and 1869 lag/ (m^2 h) for A. mangium soil respectively. N2O emission from soils treated with urea, (NH4)2SO, and KH2PO, immediately dropped to a low level but steadily increased to a very high level for the soil treated with KNO3. High NO3^- content was a basis of high level of N2O emission. N2O emission rates from soils peaked shortly after flooding, rapidly dropping to a very low level in soil from non-legume plantations, but lasting for a relatively long period in soil from legume plantations. When soil water content increased equaling to or higher than 65%, the accumulated N2O emission over a period of 13 d ranged from 20.21-29.78 mg/m^2 for S. superba, 30.57-70.12 mg/m^2 for P. elliottii and 300.89-430.51 mg/m^2 for A. mangium. The critical water content was 50% of SWC, above which a high level of N2O emission could be expected, and below which very little N2O emissions were detected. The results suggest that, at low water content( 〈 50% of SWC), the fertilization practice is safe with regard to N2O emissions, but at high water content( 〉 50% of SWC), nitrogen fertilizer in the form of nitrate could yield a 100-fold increase in N2O emissions. Legume plantations like A. mangium should be avoided in low lands which could easily suffer from flooding or poor drainage.展开更多
The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we syst...The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.展开更多
Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemi...Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m^2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m^2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.展开更多
In order to understand the water mass exchange between the South China Sea and the West PhilippineSea, and to study the dissolved carbonate system in the seas surrounding Taiwan Island, we participated in five WOCEcru...In order to understand the water mass exchange between the South China Sea and the West PhilippineSea, and to study the dissolved carbonate system in the seas surrounding Taiwan Island, we participated in five WOCEcruises (Cruises 257, 262, 266, 287 and 316) aboard R/V Ocean Researcher 1. The areas studied were the South ChinaSea, the West Philippine Sea and the Bashi Channel. Temperature, salinity, pH, alkalinity and total CO2 were measured.Our data indicate that because of the interference of the submarine topography and the Kuroshio axis, there existsa 'front' south of the Lanyu Islet. East of it, the water mass belongs to the West Philippine Sea, on the west in themixed water of the South China Sea and the West Philippine Sea.The South China Sea deep water should have the characteristics similar to the water at about 2 200 m in the WestPhilippine Sea. The calculated results from the residence time, the inorganic carbon dissolution rate and the organic carbon decomposition rate show that the differences between these two water masses should be between 0. 008~0. 023 inpH, 5. 2~15. 0 μmol/kg in apparent oxygen utilization, 3. 6~10. 2 μmol/kg in alkalinity and 6. 4~18. 4 μmol/kg intotal CO2, respectively. The measured results show that there are no distinguishable differences between these two watermasses, implying a short deep water residence time of approximately 40 a.The anthropogenic CO2 penetrates to roughly 500 m, slightly shallower than found in the West Philippine Sea. Theentire South China Sea contains (0. 38±0. 1 ) × 1015 g excess CO2.展开更多
The argument over fiscal decentralization and carbon dioxide emission(CO_(2))reduction has received much attention.However,evidence to back this claim is limited.Economic theory predicts that fiscal decentralization a...The argument over fiscal decentralization and carbon dioxide emission(CO_(2))reduction has received much attention.However,evidence to back this claim is limited.Economic theory predicts that fiscal decentralization affects environmental quality,but the specifics of this relationship are still up for debate.Some scholars noted that fiscal decentralization might lead to a race to the top,whereas others contended that it would result in a race to the bottom.In light of the current debates in environmental and development economics,this study aims to provide insight into how this relationship may function in South Africa from 1960 to 2020.In contrast to the existing research,the present study uses a novel dynamic autoregressive distributed lag simulation approach to assess the positive and negative changes in fiscal decentralization,scale effect,technique effect,technological innovation,foreign direct investment,energy consumption,industrial growth,and trade openness on CO_(2)emissions.The following are the main findings:(i)Fiscal decentralization had a CO_(2)emission reduction impact in the short and long run,highlighting the presence of the race to the top approach.(ii)Economic growth(as represented by the scale effect)eroded ecological integrity.However,its square(as expressed by technique effect)aided in strengthening ecological protection,validating the environmental Kuznets curve hypothesis.(iii)CO_(2)emissions were driven by energy utilization,trade openness,industrial value-added,and foreign direct investment,whereas technological innovation boosted ecological integrity.Findings suggest that further fiscal decentralization should be undertaken through further devolution of power to local entities,particularly regarding environmental policy issues,to maintain South Africa’s ecological sustainability.South Africa should also establish policies to improve environmental sustainability by strengthening a lower layer of government and clarifying responsibilities at the national and local levels to fulfill the energy-saving functions of fiscal expenditures.展开更多
The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the predict...The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the prediction skill of the system at a 10-day lead time for monthly TC activity is given based on 35-year(1981–2015)hindcasts with 24 ensemble members.The results show that FGOALS-f2 can capture the climatology of TC track densities in each month,but there is a delay in the monthly southward movement in the area of high track densities of TCs.The temporal correlation coefficient of TC frequency fluctuates across the different months,among which the highest appears in October(0.59)and the lowest in August(0.30).The rank correlation coefficients of TC track densities are relatively higher(R>0.6)in July,September,and November,while those in August and October are relatively lower(R within 0.2 to 0.6).For real-time prediction of TCs in 2020(July to November),FGOALS-f2 demonstrates a skillful probabilistic prediction of TC genesis and movement.Besides,the system successfully forecasts the correct sign of monthly anomalies of TC frequency and accumulated cyclone energy for 2020(July to November)in the SCS.展开更多
This study depicts the sub-seasonal prediction of the South China Sea summer monsoon onset(SCSSMO)and investigates the associated oceanic and atmospheric processes,utilizing the hindcasts of the National Centers for E...This study depicts the sub-seasonal prediction of the South China Sea summer monsoon onset(SCSSMO)and investigates the associated oceanic and atmospheric processes,utilizing the hindcasts of the National Centers for Environmental Prediction(NCEP)Climate Forecast System version 2(CFSv2).Typically,the SCSSMO is accompanied by an eastward retreat of the western North Pacific subtropical high(WNPSH),development of the cross-equatorial flow,and an increase in the east-west sea surface temperature(SST)gradient.These features are favorable for the onset of westerlies and strengthening of convection and precipitation over the South China Sea(SCS).A more vigorous SCSSMO process shows a higher predictability,and vice versa.The NCEP CFSv2 can successfully predict the onset date and evolution of the monsoon about 4 pentads(20 days)in advance(within 1–2 pentads)for more forceful(less vigorous)SCSSMO processes.On the other hand,the climatological SCSSMO that occurs around the 27th pentad can be accurately predicted in one pentad,and the predicted SCSSMO occurs 1–2 pentads earlier than the observed with a weaker intensity at longer leadtimes.Warm SST biases appear over the western equatorial Pacific preceding the SCSSMO.These biases induce a weaker-thanobserved WNPSH as a Gill-type response,leading to weakened low-level easterlies over the SCS and hence an earlier and less vigorous SCSSMO.In addition,after the SCSSMO,remarkable warm biases over the eastern Indian Ocean and the SCS and cold biases over the WNP induce weaker-than-observed westerlies over the SCS,thus also contributing to the less vigorous SCSSMO.展开更多
Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixa...Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixation in the global ocean remain uncertain,partly because of the lack of methodological uniformity.The^(15)N_(2)tracer assay(the original bubble method→the^(15)N_(2)-enriched seawater method→the modified bubble method)is the mainstream method for field measurements of N2 fixation rates(NFRs),among which the original bubble method is the most frequently used.However,accumulating evidence has suggested an underestimation of NFRs when using this method.To improve the availability of previous data,we compared NFRs measured by three^(15)N_(2)tracer assays in the South China Sea.Our results indicate that the relationship between NFRs measured by the original bubble method and the^(15)N_(2)-enriched seawater method varies obviously with area and season,which may be influenced by incubation time,diazotrophic composition,and environmental factors.In comparison,the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable,indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%.Based on this result,we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a).Our results improve the availability and comparability of literature NFR data in the South China Sea.The comparison of the^(15)N_(2)tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.展开更多
Carbon dioxide (CO<sub>2</sub>) is one of the most important greenhouse gases;its concentration and distribution have important implications on climate change. The El Ni?o Southern Oscillation (ENSO) is th...Carbon dioxide (CO<sub>2</sub>) is one of the most important greenhouse gases;its concentration and distribution have important implications on climate change. The El Ni?o Southern Oscillation (ENSO) is the Earth’s strongest climate fluctuation on inter-annual time scales and has global impacts. However, to date, there is no research on how ENSO affects the spatial distribution of CO<sub>2</sub> concentration. In this study, we used spatial CO<sub>2</sub> data from the ENVIronmentSATellite (ENVISAT) and the Greenhouse Gases Observing Satellite (GOSAT), the long duration monthly mean atmospheric CO<sub>2</sub> from Mauna Loa Observatory, Multivariate ENSO Index (MEI) from Earth System Research Laboratory to analyze the way that ENSO affects spatial distribution of CO<sub>2</sub> concentration in South America, which is affected by ENSO seriously. Our research revealed that monthly CO<sub>2</sub> growth rate has a moderate, positive correlation relationship with MEI. We used geostatistics to predict and simulate the spatial distribution of CO<sub>2</sub> and found that in south of 12°S, CO<sub>2</sub> concentration of ENSO warm episode is lower than the one of ENSO cold and neutral episodes. ENSO impacts CO<sub>2</sub> spatial distribution mainly in November, December, January and February;moderate-high concentration zone of ENSO warm episode more concentrates in the northern part of South America.展开更多
Like many of the tropical islands, the population of Andaman and Nicobar Islands, though not directly, relies predominantly upon rain water harvesting to quench their need and also depends on the groundwater sources. ...Like many of the tropical islands, the population of Andaman and Nicobar Islands, though not directly, relies predominantly upon rain water harvesting to quench their need and also depends on the groundwater sources. In the background of climate change, severity of hydrological cycle is much anticipated which may cause more extreme and unusual precipitation. It is quite essential to have other alternatives. Accordingly, groundwater could be exploited as a potential alternative. The present study intends to find out the potential groundwater source and estimate aquifer parameters in Kodiyaghat (KD) and Burmanallah (BN). As these areas are composed of very hard rock, Wenner-Schlumberger array has been used to carry out a 2D Electrical Resistivity Tomography survey to find out the fracture zone as well as to delineate the aquifer. KD and BN show maximum resistivity of 25,416 Ωm and 5985 Ωm indicate very hard rock terrain. Similarly, the minimum values of resistivity (21.6 Ωm and 30.4 Ωm) were observed at KD and BN define the presence of freshwater aquifers respectively. The aquifer identified was found to be at a depth of 5 m to 19.9 m at KD and 2.5 m to 20 m at BN. The calculated Hydraulic conductivity (14.85 m/day and 30.14 m/day), transmissivity (86.25 m2/day and 271.27 m2/day) and porosity (28.7% and 31.24%) values at KD and BN confirmed that, the located aquifer was of fresh ground water quality and can be utilized for drinking and house hold purposes. According to the results, almost 70% of the study area is hard rock terrain and 30% comes under potential aquifer zone. The results also show that, both the areas were characterized by Horst and Graben topography and suggest possible groundwater sources for future exploration.展开更多
According to palaeoenvironmental analysis on the fossil fauna dominated by Foraminifera and Ostracoda, core QC2 contains 8 marine transgressive beds, called (from up to bottom) Transgressive Beds Ⅰ,Ⅱ, Ⅲ, …,Ⅷ resp...According to palaeoenvironmental analysis on the fossil fauna dominated by Foraminifera and Ostracoda, core QC2 contains 8 marine transgressive beds, called (from up to bottom) Transgressive Beds Ⅰ,Ⅱ, Ⅲ, …,Ⅷ respectively. Together with dating data, the transgressive sequence since 1. 7 Ma B. P. has been established, indicating that the core went through middle and late Early Pleistocene, early and late Middle Pleistocene, early and late (Substages A and B) Late Pleistocene and the Holocene transgressions. Within these 8 transgressions, late Middle Pleistocene, early Late Pleistocene and the Holocene transgressions-had rather strong activities proved by shallow sea (of 50 or 20-50 m water depth) deposits in the prime, while 2 of the 8, during middle Early Pleistocene and late Late Pleistocene (Substage A), were much weaker only with supratidal deposits. The transgressive cycles also differ from each other. Transgressions in the Holocene and in Substage B of late Late Pleistocene are made up of 3 and 2 subcycles of marine ingressions and regressions respectively, but most transgressions only have a single ingressive or regressive sequence. With the core, some important problems concerning, the study of Quaternary transgression such as correlation of transgressive beds and climatic periods and dating of the transgressive beds are discussed in this paper.展开更多
Sea surface wind(SSW)observations from a newly developed“Black Pearl”wave glider,the Chinese-French Oceanography Satellite(CFOSAT),the HY-2A microwave scatterometer,and a recently released high-resolution atmospheri...Sea surface wind(SSW)observations from a newly developed“Black Pearl”wave glider,the Chinese-French Oceanography Satellite(CFOSAT),the HY-2A microwave scatterometer,and a recently released high-resolution atmospheric reanalysis(ERA5)are evaluated with respect to in-situ buoy observations(115.46°E,19.85°N)from the South China Sea.Buoy observations from June to November 2019 are used to evaluate the wind estimates from the different platforms.The comparisons show that the HY-2A and CFOSAT scatterometer wind speeds have mean root mean square errors(RMSEs)of approximately 1.6 and 1.6 m/s,respectively,and the corresponding mean wind direction RMSEs are approximately 19°and 17°,which indicates that these satellite retrievals meet the requirements of design engineering missions.The wind speed and wind direction RMSEs of ERA5 are approximately 1.9 m/s and 33°,respectively.The correlation coefficients between the HY-2A,CFOSAT,and ERA5 wind speeds and the buoy observations are 0.86,0.85,and 0.84,respectively,and the corresponding coefficients of the wind direction are 0.98,0.98,and 0.93,respectively,at a 95%confidence level.However,the wind sensor in the wave glider provides relatively poor-quality observations compared with the buoy measurements and has higher wind speed and wind direction RMSEs of 2.9 m/s and 50.1°,respectively.Taylor diagrams are utilized to illustrate comprehensive wind comparisons between the multiplatform observations and buoy observations.The results help identify the basic biases in SSWs among different products and enhance confidence in the future use of SSW data for studies of upper ocean dynamics and climate analysis.Suggestions are also off ered to help improve the design of next-generation wave gliders.展开更多
Historical simulations (present climate) and projections under RCP8.5 scenario (future climate) by HadGEM2-ES of temperature and precipitation are analyzed during the four seasons in South America. Projections of prec...Historical simulations (present climate) and projections under RCP8.5 scenario (future climate) by HadGEM2-ES of temperature and precipitation are analyzed during the four seasons in South America. Projections of precipitation are discussed in terms of atmospheric circulation. The South Atlantic Convergence Zone (SACZ) and the Pacific South America (PSA) patterns are analyzed in simulations of present climate and in future climate projections. The model shows small systematic errors over South America, larger close to the northern South American coast in DJF and MAM. The seasonal variability of precipitation, temperature and wind fields is very well reproduced, mainly the summer/winter differences. The SACZ and the Intertropical Convergence Zone (ITCZ) are well simulated. The good model performance to reproduce the precipitation, temperature and wind fields, in the present climate, gives confidence in the projection results subject to the future scenarios. Changes from the present time to the future indicate increased precipitation over southern and southeastern Brazil and areas nearby and the tropical western South American coast. Reduced precipitation is projected over eastern Amazonia, northern South America and southern Chile. The changes are related to changes in the low level wind flow over the tropical North Atlantic, which reduces the advection of moisture to the continent and also to the increased low level flow over central South America southwards, which increases the humidity in the southern regions. The upper level flow changes are also consistent with the precipitation changes. There is a weakening of the Bolivian High and a strengthening of the subtropical jet over the continent. The SACZ dipole pattern is well simulated and in the future projections the southern center anomalies are more intense than in the present time. The PSA1 and PSA2 patterns are well represented in the present climate, but in the future projection only one dominant mode is identified as the typical teleconnection over the Pacific and South America.展开更多
Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemis...Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemispheres is an important but challenging task.In this study,we used a combination of multiple observations and a model simulation to examine the north–south hemispheric difference in the I-T coupling system in the American and Asian sectors during the geomagnetic superstorm that occurred in May 2024.Observations of the total electron content(TEC)showed that the Asian sector had negative storms in the northern hemisphere and positive storms in the southern hemisphere,a process that exacerbated the hemispheric differences in the TEC.However,both hemispheres of the American sector showed negative storms.The thermospheric composition changes also differed between the two sectors,and their variation could partially explain the hemispheric differences caused by positive and negative storms.Moreover,the influence of the thermospheric density change was less than that of the thermospheric composition.Finally,the dynamic effect of the thermospheric wind and the plasma transport processes strongly modulated the north–south differences in the TEC at nighttime in the American and Asian sectors,respectively,during this superstorm.展开更多
基金This study was financially supported by the Natural Science Foundation of China(Grant Nos.42172016,41890844,41890840,41621003,41772010,41720104002)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB26000000)the Key Scientific and Technological Innovation Team Project in Shaanxi Province and the State Key Laboratory of Palaeobiology and Stratigraphy(Nanjing Institute of Geology and Palaeontology,CAS,Grant Nos.203106,163107).
文摘Hexangulaconulariids,an extinct family of medusozoan small shelly fossils(SSFs),were a conspicuous component of early Cambrian,shallow marine platform communities in South China.Described herein is Septuconularia crassiformis sp.nov.from Bed 5 of the Yanjiahe Formation(Cambrian Stage 2)in the Three Gorges area of Hubei Province.The new species differs from the type and only other known species,S.yanjiaheensis,in the shape of the abapical portion and in the degree of curvature of the adapertural margin.The anatomy of the apical portion of the new species is unknown.The diagnosis of the genus Septuconularia is emended and the spatio-temporal distribution of hexangulaconulariids in South China is summarized.Finally,S.yanjiaheensis,with its slit-like aperture and very narrow transverse cross-section,may have been better adapted to the shallow platform environment than the broader S.crassiformis,which appears to have been less common than the type species.
基金The National Science and Technology Major Project under contract No.2016ZX05057015the National Natural Science Foundation of China(NSFC)under contract Nos 41376038+6 种基金4040600941806123 and 41506038the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405the National Program on Global Change and Air-Sea Interaction under contract Nos GASI-03-01-01-02GASI-02-IND-STSsum and GASI-IPOVAI-01-05the Public Science and Technology Research Funds Projects of Ocean under contract No.200905024the National Key Scientific Instrument and Equipment Development Projects under contract No.2012YQ12003908。
文摘The mode-2 internal solitary waves(ISWs)generated by mode-2 internal tide(IT)are identified by mooring observations in the northern South China Sea(SCS)from 2016 to 2017.Two mode-2 ISWs with a re-appearance period of 24.9 h observed on 29 and 30 July 2016 are characterized by type-b ISWs.They occurred when the isotherms compressed obviously in the vertical direction.Modal decomposition of IT horizontal currents shows that the vertical compression of the isotherms is mainly caused by diurnal mode-2 IT.The analysis of the role of the density stratification reveals that a deeper and thinner pycnocline is favorable for generation of mode-2 ISWs rather than pycnocline intensity.By comparing the mode-2 nonlinear,dispersion coefficients and the Ursell numbers calculated based on the stratification associated with different kinds of ITs with the observation results,it is shown that the diurnal mode-2 IT plays a crucial role in the generation of the mode-2 ISWs.When the diurnal mode-2 IT interacts with the semidiurnal IT and causes a deeper and thinner pycnocline,the mode-2 ISWs are easily excited.
基金This work was supported by the Key Project of the National Natural Science Foundation of China(No.40490263)the National Natural Science Foundation of China(Nos.40706040,40376022 and 40606023)+1 种基金the Doctoral Program for Higher Education(20030423007)Scientific Research Promotional fund for Middle-age and Young Scientist of Shandong Province(2007BS08015).
文摘A multilayer study of pCO2 for the Yellow and South China Seas in the surface waters was conducted based on data from four cruises sponsored by the China SOLAS Project in 2005 and 2006,including data for the surface microlayer(SML) ,subsurface layer(SSL) and surface layer(SL) . The carbon fluxes across the air-sea interface were calculated. The results showed that the pCO2 values in the surface waters of the study area decreased in the following order:pCO2 SML> pCO2 SSL> pCO2 SL. The highest values were found in March for all SML,SSL and SL,followed by those in April,and the lowest were in May. The pCO2 values had a significant positive correlation with temperature or salinity. While there was no relationship between pCO2 and longitude,there was a significant negative correlation between it and latitude,i.e.,'high latitude low pCO2'. By using four calculation models,the carbon dioxide fluxes(FC O2) in spring in the Yellow and South China Seas,which were found to act as a 'sink' of atmospheric CO2,were preliminarily estimated on the basis of the pCO2 data in the SML to be -7.00×106 t C and -22.35×106 t C,respectively. It is suggested that the FC O2calculated on the basis of pCO2 data in the SML is more reliable than that calculated on the basis of those in the SL.
文摘The effects of fertilizers and water content on N2O emission were studied using the three most typical plantation soils. Soil incubations were performed and fertilization and water content treatments were designed. At 25% of saturated water content(SWC), N2O emissions from the soil treated with urea, KNO3, (NH4)2 SO, and KH2 PO, were compared at application rates of 0, 100, 200, 300 and 500 kg/hm2. At 80% of SWC, similar experiments were carried out but at only one application rate(500 kg/hm^2). N2O emissions at various water contents(20%, 35%, 50%, 65%, 80% and 100% of SWC) were studied. At low water content(25% of SWC), neither nitrogen nor phosphorus(or potassium) fertilizers led to a high level of N2O emission, which generally ranged from 2.03 to 29.02 μg/(m^2·h). However, at high water content(80% SWC), the fertilizers resulted in much greater N2O emission irregardless of soil tested. The highest N2O emission rates after 24 h of water addition were 1233 lag/( m^2 ·h) for S. superba soil, 1507 lag/(m^2 · h) for P. elliottii soil and 1869 lag/ (m^2 h) for A. mangium soil respectively. N2O emission from soils treated with urea, (NH4)2SO, and KH2PO, immediately dropped to a low level but steadily increased to a very high level for the soil treated with KNO3. High NO3^- content was a basis of high level of N2O emission. N2O emission rates from soils peaked shortly after flooding, rapidly dropping to a very low level in soil from non-legume plantations, but lasting for a relatively long period in soil from legume plantations. When soil water content increased equaling to or higher than 65%, the accumulated N2O emission over a period of 13 d ranged from 20.21-29.78 mg/m^2 for S. superba, 30.57-70.12 mg/m^2 for P. elliottii and 300.89-430.51 mg/m^2 for A. mangium. The critical water content was 50% of SWC, above which a high level of N2O emission could be expected, and below which very little N2O emissions were detected. The results suggest that, at low water content( 〈 50% of SWC), the fertilization practice is safe with regard to N2O emissions, but at high water content( 〉 50% of SWC), nitrogen fertilizer in the form of nitrate could yield a 100-fold increase in N2O emissions. Legume plantations like A. mangium should be avoided in low lands which could easily suffer from flooding or poor drainage.
基金the National Natural Science Foundation of China(Nos.41906188,41806057,41776081)the National Marine Geology Project of China(Nos.DD20160147,DD20190365)+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-GEOGE-02)the Special Fund for the Taishan Scholar Program of Shandong Province(No.ts201511061)。
文摘The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.
基金The National Key Research and Development Program of China under contract No.2016YFC1401605the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA 1102010403+1 种基金the National Natural Science Foundation of China under contract Nos 41222038,41206023 and 41406036the Guangdong Provincial Key Laboratory of Fishery Ecology and Environment under contract No.LFE-2015-3
文摘Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m^2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m^2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.
文摘In order to understand the water mass exchange between the South China Sea and the West PhilippineSea, and to study the dissolved carbonate system in the seas surrounding Taiwan Island, we participated in five WOCEcruises (Cruises 257, 262, 266, 287 and 316) aboard R/V Ocean Researcher 1. The areas studied were the South ChinaSea, the West Philippine Sea and the Bashi Channel. Temperature, salinity, pH, alkalinity and total CO2 were measured.Our data indicate that because of the interference of the submarine topography and the Kuroshio axis, there existsa 'front' south of the Lanyu Islet. East of it, the water mass belongs to the West Philippine Sea, on the west in themixed water of the South China Sea and the West Philippine Sea.The South China Sea deep water should have the characteristics similar to the water at about 2 200 m in the WestPhilippine Sea. The calculated results from the residence time, the inorganic carbon dissolution rate and the organic carbon decomposition rate show that the differences between these two water masses should be between 0. 008~0. 023 inpH, 5. 2~15. 0 μmol/kg in apparent oxygen utilization, 3. 6~10. 2 μmol/kg in alkalinity and 6. 4~18. 4 μmol/kg intotal CO2, respectively. The measured results show that there are no distinguishable differences between these two watermasses, implying a short deep water residence time of approximately 40 a.The anthropogenic CO2 penetrates to roughly 500 m, slightly shallower than found in the West Philippine Sea. Theentire South China Sea contains (0. 38±0. 1 ) × 1015 g excess CO2.
文摘The argument over fiscal decentralization and carbon dioxide emission(CO_(2))reduction has received much attention.However,evidence to back this claim is limited.Economic theory predicts that fiscal decentralization affects environmental quality,but the specifics of this relationship are still up for debate.Some scholars noted that fiscal decentralization might lead to a race to the top,whereas others contended that it would result in a race to the bottom.In light of the current debates in environmental and development economics,this study aims to provide insight into how this relationship may function in South Africa from 1960 to 2020.In contrast to the existing research,the present study uses a novel dynamic autoregressive distributed lag simulation approach to assess the positive and negative changes in fiscal decentralization,scale effect,technique effect,technological innovation,foreign direct investment,energy consumption,industrial growth,and trade openness on CO_(2)emissions.The following are the main findings:(i)Fiscal decentralization had a CO_(2)emission reduction impact in the short and long run,highlighting the presence of the race to the top approach.(ii)Economic growth(as represented by the scale effect)eroded ecological integrity.However,its square(as expressed by technique effect)aided in strengthening ecological protection,validating the environmental Kuznets curve hypothesis.(iii)CO_(2)emissions were driven by energy utilization,trade openness,industrial value-added,and foreign direct investment,whereas technological innovation boosted ecological integrity.Findings suggest that further fiscal decentralization should be undertaken through further devolution of power to local entities,particularly regarding environmental policy issues,to maintain South Africa’s ecological sustainability.South Africa should also establish policies to improve environmental sustainability by strengthening a lower layer of government and clarifying responsibilities at the national and local levels to fulfill the energy-saving functions of fiscal expenditures.
基金funded by the Na-tional Natural Science Foundation of China[grant number 42005117]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDB40030205]the Key Special Project for the Introducing Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangdong)[grant number GML2019ZD0601]。
文摘The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the prediction skill of the system at a 10-day lead time for monthly TC activity is given based on 35-year(1981–2015)hindcasts with 24 ensemble members.The results show that FGOALS-f2 can capture the climatology of TC track densities in each month,but there is a delay in the monthly southward movement in the area of high track densities of TCs.The temporal correlation coefficient of TC frequency fluctuates across the different months,among which the highest appears in October(0.59)and the lowest in August(0.30).The rank correlation coefficients of TC track densities are relatively higher(R>0.6)in July,September,and November,while those in August and October are relatively lower(R within 0.2 to 0.6).For real-time prediction of TCs in 2020(July to November),FGOALS-f2 demonstrates a skillful probabilistic prediction of TC genesis and movement.Besides,the system successfully forecasts the correct sign of monthly anomalies of TC frequency and accumulated cyclone energy for 2020(July to November)in the SCS.
基金jointly supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42088101,41975074 and 42175023)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100304)the Second Comprehensive Scientific Investigation on the Tibetan Plateau of China(2019QZKK0208)the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(Grant No.2020B1212060025)。
文摘This study depicts the sub-seasonal prediction of the South China Sea summer monsoon onset(SCSSMO)and investigates the associated oceanic and atmospheric processes,utilizing the hindcasts of the National Centers for Environmental Prediction(NCEP)Climate Forecast System version 2(CFSv2).Typically,the SCSSMO is accompanied by an eastward retreat of the western North Pacific subtropical high(WNPSH),development of the cross-equatorial flow,and an increase in the east-west sea surface temperature(SST)gradient.These features are favorable for the onset of westerlies and strengthening of convection and precipitation over the South China Sea(SCS).A more vigorous SCSSMO process shows a higher predictability,and vice versa.The NCEP CFSv2 can successfully predict the onset date and evolution of the monsoon about 4 pentads(20 days)in advance(within 1–2 pentads)for more forceful(less vigorous)SCSSMO processes.On the other hand,the climatological SCSSMO that occurs around the 27th pentad can be accurately predicted in one pentad,and the predicted SCSSMO occurs 1–2 pentads earlier than the observed with a weaker intensity at longer leadtimes.Warm SST biases appear over the western equatorial Pacific preceding the SCSSMO.These biases induce a weaker-thanobserved WNPSH as a Gill-type response,leading to weakened low-level easterlies over the SCS and hence an earlier and less vigorous SCSSMO.In addition,after the SCSSMO,remarkable warm biases over the eastern Indian Ocean and the SCS and cold biases over the WNP induce weaker-than-observed westerlies over the SCS,thus also contributing to the less vigorous SCSSMO.
基金The National Natural Science Foundation of China under contract Nos 42076042 and 41721005the Fund of Ministry of Science and Technology of China under contract No.2017FY201403the Fund of China Ocean Mineral Resources R&D Association under contract No.DY135-13-E2-03.
文摘Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixation in the global ocean remain uncertain,partly because of the lack of methodological uniformity.The^(15)N_(2)tracer assay(the original bubble method→the^(15)N_(2)-enriched seawater method→the modified bubble method)is the mainstream method for field measurements of N2 fixation rates(NFRs),among which the original bubble method is the most frequently used.However,accumulating evidence has suggested an underestimation of NFRs when using this method.To improve the availability of previous data,we compared NFRs measured by three^(15)N_(2)tracer assays in the South China Sea.Our results indicate that the relationship between NFRs measured by the original bubble method and the^(15)N_(2)-enriched seawater method varies obviously with area and season,which may be influenced by incubation time,diazotrophic composition,and environmental factors.In comparison,the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable,indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%.Based on this result,we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a).Our results improve the availability and comparability of literature NFR data in the South China Sea.The comparison of the^(15)N_(2)tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.
文摘Carbon dioxide (CO<sub>2</sub>) is one of the most important greenhouse gases;its concentration and distribution have important implications on climate change. The El Ni?o Southern Oscillation (ENSO) is the Earth’s strongest climate fluctuation on inter-annual time scales and has global impacts. However, to date, there is no research on how ENSO affects the spatial distribution of CO<sub>2</sub> concentration. In this study, we used spatial CO<sub>2</sub> data from the ENVIronmentSATellite (ENVISAT) and the Greenhouse Gases Observing Satellite (GOSAT), the long duration monthly mean atmospheric CO<sub>2</sub> from Mauna Loa Observatory, Multivariate ENSO Index (MEI) from Earth System Research Laboratory to analyze the way that ENSO affects spatial distribution of CO<sub>2</sub> concentration in South America, which is affected by ENSO seriously. Our research revealed that monthly CO<sub>2</sub> growth rate has a moderate, positive correlation relationship with MEI. We used geostatistics to predict and simulate the spatial distribution of CO<sub>2</sub> and found that in south of 12°S, CO<sub>2</sub> concentration of ENSO warm episode is lower than the one of ENSO cold and neutral episodes. ENSO impacts CO<sub>2</sub> spatial distribution mainly in November, December, January and February;moderate-high concentration zone of ENSO warm episode more concentrates in the northern part of South America.
文摘Like many of the tropical islands, the population of Andaman and Nicobar Islands, though not directly, relies predominantly upon rain water harvesting to quench their need and also depends on the groundwater sources. In the background of climate change, severity of hydrological cycle is much anticipated which may cause more extreme and unusual precipitation. It is quite essential to have other alternatives. Accordingly, groundwater could be exploited as a potential alternative. The present study intends to find out the potential groundwater source and estimate aquifer parameters in Kodiyaghat (KD) and Burmanallah (BN). As these areas are composed of very hard rock, Wenner-Schlumberger array has been used to carry out a 2D Electrical Resistivity Tomography survey to find out the fracture zone as well as to delineate the aquifer. KD and BN show maximum resistivity of 25,416 Ωm and 5985 Ωm indicate very hard rock terrain. Similarly, the minimum values of resistivity (21.6 Ωm and 30.4 Ωm) were observed at KD and BN define the presence of freshwater aquifers respectively. The aquifer identified was found to be at a depth of 5 m to 19.9 m at KD and 2.5 m to 20 m at BN. The calculated Hydraulic conductivity (14.85 m/day and 30.14 m/day), transmissivity (86.25 m2/day and 271.27 m2/day) and porosity (28.7% and 31.24%) values at KD and BN confirmed that, the located aquifer was of fresh ground water quality and can be utilized for drinking and house hold purposes. According to the results, almost 70% of the study area is hard rock terrain and 30% comes under potential aquifer zone. The results also show that, both the areas were characterized by Horst and Graben topography and suggest possible groundwater sources for future exploration.
文摘According to palaeoenvironmental analysis on the fossil fauna dominated by Foraminifera and Ostracoda, core QC2 contains 8 marine transgressive beds, called (from up to bottom) Transgressive Beds Ⅰ,Ⅱ, Ⅲ, …,Ⅷ respectively. Together with dating data, the transgressive sequence since 1. 7 Ma B. P. has been established, indicating that the core went through middle and late Early Pleistocene, early and late Middle Pleistocene, early and late (Substages A and B) Late Pleistocene and the Holocene transgressions. Within these 8 transgressions, late Middle Pleistocene, early Late Pleistocene and the Holocene transgressions-had rather strong activities proved by shallow sea (of 50 or 20-50 m water depth) deposits in the prime, while 2 of the 8, during middle Early Pleistocene and late Late Pleistocene (Substage A), were much weaker only with supratidal deposits. The transgressive cycles also differ from each other. Transgressions in the Holocene and in Substage B of late Late Pleistocene are made up of 3 and 2 subcycles of marine ingressions and regressions respectively, but most transgressions only have a single ingressive or regressive sequence. With the core, some important problems concerning, the study of Quaternary transgression such as correlation of transgressive beds and climatic periods and dating of the transgressive beds are discussed in this paper.
基金Supported by the National Natural Science Foundation of China(No.42076016)the Fundamental Research Funds for the Central Universities(No.2019B02814)the National Key Research and Development Program of China(No.2018YFC0213104)。
文摘Sea surface wind(SSW)observations from a newly developed“Black Pearl”wave glider,the Chinese-French Oceanography Satellite(CFOSAT),the HY-2A microwave scatterometer,and a recently released high-resolution atmospheric reanalysis(ERA5)are evaluated with respect to in-situ buoy observations(115.46°E,19.85°N)from the South China Sea.Buoy observations from June to November 2019 are used to evaluate the wind estimates from the different platforms.The comparisons show that the HY-2A and CFOSAT scatterometer wind speeds have mean root mean square errors(RMSEs)of approximately 1.6 and 1.6 m/s,respectively,and the corresponding mean wind direction RMSEs are approximately 19°and 17°,which indicates that these satellite retrievals meet the requirements of design engineering missions.The wind speed and wind direction RMSEs of ERA5 are approximately 1.9 m/s and 33°,respectively.The correlation coefficients between the HY-2A,CFOSAT,and ERA5 wind speeds and the buoy observations are 0.86,0.85,and 0.84,respectively,and the corresponding coefficients of the wind direction are 0.98,0.98,and 0.93,respectively,at a 95%confidence level.However,the wind sensor in the wave glider provides relatively poor-quality observations compared with the buoy measurements and has higher wind speed and wind direction RMSEs of 2.9 m/s and 50.1°,respectively.Taylor diagrams are utilized to illustrate comprehensive wind comparisons between the multiplatform observations and buoy observations.The results help identify the basic biases in SSWs among different products and enhance confidence in the future use of SSW data for studies of upper ocean dynamics and climate analysis.Suggestions are also off ered to help improve the design of next-generation wave gliders.
基金We thanks CNPq and Claris-LPB for research support.The research leading to these results has received funding from the European Community’s Seventh Framework Program-me(FP7/2007-2013)under Grant Agreement No.212492:CLARIS LPB.
文摘Historical simulations (present climate) and projections under RCP8.5 scenario (future climate) by HadGEM2-ES of temperature and precipitation are analyzed during the four seasons in South America. Projections of precipitation are discussed in terms of atmospheric circulation. The South Atlantic Convergence Zone (SACZ) and the Pacific South America (PSA) patterns are analyzed in simulations of present climate and in future climate projections. The model shows small systematic errors over South America, larger close to the northern South American coast in DJF and MAM. The seasonal variability of precipitation, temperature and wind fields is very well reproduced, mainly the summer/winter differences. The SACZ and the Intertropical Convergence Zone (ITCZ) are well simulated. The good model performance to reproduce the precipitation, temperature and wind fields, in the present climate, gives confidence in the projection results subject to the future scenarios. Changes from the present time to the future indicate increased precipitation over southern and southeastern Brazil and areas nearby and the tropical western South American coast. Reduced precipitation is projected over eastern Amazonia, northern South America and southern Chile. The changes are related to changes in the low level wind flow over the tropical North Atlantic, which reduces the advection of moisture to the continent and also to the increased low level flow over central South America southwards, which increases the humidity in the southern regions. The upper level flow changes are also consistent with the precipitation changes. There is a weakening of the Bolivian High and a strengthening of the subtropical jet over the continent. The SACZ dipole pattern is well simulated and in the future projections the southern center anomalies are more intense than in the present time. The PSA1 and PSA2 patterns are well represented in the present climate, but in the future projection only one dominant mode is identified as the typical teleconnection over the Pacific and South America.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42030202, 42241115, and 42174204)the China Postdoctoral Science Foundation (Grant No. 2023M743467)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y202021)the National Key R&D Program of China (Grant No. 2022YFF0504400)the Opening Funding of the Chinese Academy of Sciences dedicated to the Chinese Meridian Project
文摘Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemispheres is an important but challenging task.In this study,we used a combination of multiple observations and a model simulation to examine the north–south hemispheric difference in the I-T coupling system in the American and Asian sectors during the geomagnetic superstorm that occurred in May 2024.Observations of the total electron content(TEC)showed that the Asian sector had negative storms in the northern hemisphere and positive storms in the southern hemisphere,a process that exacerbated the hemispheric differences in the TEC.However,both hemispheres of the American sector showed negative storms.The thermospheric composition changes also differed between the two sectors,and their variation could partially explain the hemispheric differences caused by positive and negative storms.Moreover,the influence of the thermospheric density change was less than that of the thermospheric composition.Finally,the dynamic effect of the thermospheric wind and the plasma transport processes strongly modulated the north–south differences in the TEC at nighttime in the American and Asian sectors,respectively,during this superstorm.